Skip to main content
Log in

Determination of surface albedo and snow/ice content variation using the MODIS data in the past two decades (2001–2020)

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Snow/ice cover is an integral part of the Earth’s climate system. Earth’s snow/ice cover helps regulate the energy exchange between the Earth’s surface and the atmosphere, directly regulating the surface (and near-surface) temperatures. This study utilizes measurements from the Moderate Resolution Imaging Spectroradiometer (MODIS) MCD43C3 dataset to derive the albedo and snow cover variation over the past two decades (2001–2020). The snow cover and the albedo vary with local seasonal variation. The global and the southern hemisphere albedo drops by about 17.4% and 26.9%, respectively, during 2017–2020. However, the northern hemisphere albedo drops by about 10.3% from 2017 to 2019 and then increases by about 14.2% in 2020. For non-glaciated regions, the albedo drops from 2017 to 2019 is maximum during JJA (23.5%), followed by SON (19.2%), DJF (12.7%), and MAM (7.1%) months averages. The non-glaciated albedo in the southern hemisphere falls (2016 onwards) by about 40.6%, 47.5%, 55.8%, 30.8% for DJF, MAM, JJA, and SON month averages, respectively. Since the snow cover variation is minimal in the past two decades, an increase in the Northern Hemisphere’s albedo in 2020 indicates a relatively fresher snow presence on the surface compared to previous years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Data availability

The complete MODIS MCD43C3 data can be directly accessed by visiting the following link: https://doi.org/10.5067/MODIS/MCD43C3.006. The MCD12C1 dataset can be accessed via https://doi.org/10.5067/MODIS/MCD12C1.006. The plots and maps generated in this study can be obtained by directly contacting the corresponding author.

References

  • Aoki T, Motoyoshi H, Kodama Y, Yasunari T J, Sugiura K and Kobayashi H 2006 Atmospheric aerosol deposition on snow surfaces and its effect on albedo; Sola 2 13–16, https://doi.org/10.2151/sola.2006-004.

    Article  Google Scholar 

  • Bond T C, Doherty S J, Fahey D W, Forster P M, Berntsen T, DeAngelo B J, Flanner M G, Ghan S, Kärcher B, Koch D, Kinne S, Kondo Y, Quinn P K, Sarofim M C, Schultz M G, Schulz M, Venkataraman C, Zhang H, Zhang S and Zender C S et al. 2013 Bounding the role of black carbon in the climate system: A scientific assessment; J. Geophys. Res. Atmos. 118(11) 5380–5552, https://doi.org/10.1002/jgrd.50171.

  • Bony S, Colman R, Kattsov V M, Allan R P, Bretherton C S, Dufresne J-L, Hall A, Hallegatte S, Holland M M, Ingram W, Randall D A, Soden B J, Tselioudis G and Webb M J 2006 How well do we understand and evaluate climate change feedback processes?; J. Clim. 19(15) 3445–3482, https://doi.org/10.1175/JCLI3819.1.

    Article  Google Scholar 

  • Cao Y, Liang S, Chen X and He T 2015 Assessment of sea ice albedo radiative forcing and feedback over the northern hemisphere from 1982 to 2009 using satellite and reanalysis data; J. Clim. 28(3) 1248–1259, https://doi.org/10.1175/JCLI-D-14-00389.1.

    Article  Google Scholar 

  • Flanner M G, Shell K M, Barlage M, Perovich D K and Tschudi M A 2011 Radiative forcing and albedo feedback from the northern hemisphere cryosphere between 1979 and 2008; Nat. Geosci. 43 151–155, https://doi.org/10.1038/ngeo1062.

  • Flanner M G, Zender C S, Hess P G, Mahowald N M, Painter T H, Ramanathan V and Rasch P J 2009 Springtime warming and reduced snow cover from carbonaceous particles; Atmos. Chem. Phys. 97 2481–2497, https://doi.org/10.5194/acp-9-2481-2009.

    Article  Google Scholar 

  • Flanner M G, Zender C S, Randerson J T and Rasch P J 2007 Present-day climate forcing and response from black carbon in snow; J. Geophys. Res.: Atmos. 112(D11), https://doi.org/10.1029/2006JD008003.

  • Flato G, Marotzke J, Abiodun B, Braconnot P, Chou S C, Collins W, Cox P, Driouech F, Emori S and Eyring V 2013 Climate change 2013: The physical science basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Evaluation of Climate Models (eds) Stocker T F, Qin D, Plattner G-K, Tignor M, Allen S K and Boschung J et al., Cambridge: Cambridge University Press.

  • Friedl M and Sulla-Menashe D 2015 MCD12C1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 0.05° CMG V006; NASA EOSDIS Land Processes DAAC, https://doi.org/10.5067/MODIS/MCD12C1.006.

  • Gao F, Schaaf C B, Strahler A H, Roesch A, Lucht W and Dickinson R 2005 MODIS bidirectional reflectance distribution function and albedo climate modeling grid products and the variability of albedo for major global vegetation types; J. Geophys. Res.: Atmos. 110(D1), https://doi.org/10.1029/2004JD005190.

  • Hamed K H 2008 Trend detection in hydrologic data: the Mann–Kendall trend test under the scaling hypothesis; J. Hydrol. 349(3) 350–363, https://doi.org/10.1016/j.jhydrol.2007.11.009.

    Article  Google Scholar 

  • Hamed K H and Ramachandra Rao A 1998 A modified Mann–Kendall trend test for autocorrelated data; J. Hydrol. 204(1) 182–196, https://doi.org/10.1016/S0022-1694(97)00125-X.

    Article  Google Scholar 

  • He C, Takano Y and Liou K-N 2017 Close packing effects on clean and dirty snow albedo and associated climatic implications; Geophys. Res. Lett. 448 3719–3727, https://doi.org/10.1002/2017GL072916.

    Article  Google Scholar 

  • Hudson S R 2011 Estimating the global radiative impact of the sea ice–albedo feedback in the Arctic; J. Geophys. Res.: Atmos. 116(D16), https://doi.org/10.1029/2011JD015804.

  • Koch D, Schulz M, Kinne S, McNaughton C, Spackman J R, Balkanski Y, Bauer S, Berntsen T, Bond T C, Boucher O, Chin M, Clarke A, De Luca N, Dentener F, Diehl T, Dubovik O, Easter R, Fahey D W, Feichter J and Zhao Y et al. 2009 Evaluation of black carbon estimations in global aerosol models; Atmos. Chem. Phys. 9(22) 9001–9026, https://doi.org/10.5194/acp-9-9001-2009.

    Article  Google Scholar 

  • Lee W-L, Liou K N, He C, Liang H-C, Wang T-C, Li Q, Liu Z and Yue Q 2017 Impact of absorbing aerosol deposition on snow albedo reduction over the southern Tibetan plateau based on satellite observations; Theor. Appl. Climatol. 129(3) 1373–1382, https://doi.org/10.1007/s00704-016-1860-4.

    Article  Google Scholar 

  • Lewis P and Barnsley M J 1994 Influence of the sky radiance distribution on various formulations of the earth surface albedo; 6th International Symposium on Physical Measurements and Signatures in Remote Sensing, ISPRS, pp. 707–715.

  • Lucht W, Schaaf C B and Strahler A H 2000 An algorithm for the retrieval of albedo from space using semiempirical BRDF models; IEEE Trans. Geosci. Remote Sens. 38(2) 977–998, https://doi.org/10.1109/36.841980.

    Article  Google Scholar 

  • North G R, Cahalan R F and Coakley J A 1981 Energy balance climate models; Rev. Geophys. 19(1) 91–121, https://doi.org/10.1029/RG019i001p00091.

    Article  Google Scholar 

  • Perket J, Flanner M G and Kay J E 2014 Diagnosing shortwave cryosphere radiative effect and its 21st century evolution in CESM; J. Geophys. Res.: Atmos. 119(3) 1356–1362, https://doi.org/10.1002/2013JD021139.

  • Pistone K, Eisenman I and Ramanathan V 2014 Observational determination of albedo decrease caused by vanishing Arctic sea ice; Proc. Natl. Acad. Sci. 111(9) 3322, https://doi.org/10.1073/pnas.1318201111.

    Article  Google Scholar 

  • Randall D A, Wood R A, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V, Pitman A, Shukla J and Srinivasan J 2007 Climate Change 2007: The physical science basis; Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, Chap Climate Models and Their Evaluation.

  • Schaaf C B and Wang Z 2015 MCD43C3 MODIS/Terra+Aqua BRDF/Albedo Daily L3 Global 0.05Deg CMG V006; NASA EOSDIS Land Processes DAAC, https://doi.org/10.5067/MODIS/MCD43C3.006.

  • Schaaf Crystal B, Gao F, Strahler A H, Lucht W, Li X, Tsang T, Strugnell N C, Zhang X, Jin Y, Muller J-P, Lewis P, Barnsley M, Hobson P, Disney M, Roberts G, Dunderdale M, Doll C, d’Entremont R P, Hu B and Roy D et al. 2002 First operational BRDF, albedo nadir reflectance products from MODIS; Remote Sens. Environ. 83(1) 135–148, https://doi.org/10.1016/S0034-4257(02)00091-3.

    Article  Google Scholar 

  • Schneider A, Flanner M and Perket J 2018 Multidecadal variability in surface albedo feedback across CMIP5 Models; Geophys. Res. Lett. 45(4) 1972–1980, https://doi.org/10.1002/2017GL076293.

    Article  Google Scholar 

  • Shell K M, Kiehl J T and Shields C A 2008 Using the radiative kernel technique to calculate climate feedbacks in NCAR’s community atmospheric model; J. Clim. 21(10) 2269–2282, https://doi.org/10.1175/2007JCLI2044.1.

    Article  Google Scholar 

  • Singh D and Flanner M G 2016 An improved carbon dioxide snow spectral albedo model: Application to Martian conditions; J. Geophys. Res.: Planets 121(10) 2037–2054, https://doi.org/10.1002/2016JE005040.

  • Singh D, Flanner M G and Perket J 2015 The global land shortwave cryosphere radiative effect during the MODIS era; The Cryosphere 9(6) 2057–2070, https://doi.org/10.5194/tc-9-2057-2015.

    Article  Google Scholar 

  • Soden B J, Held I M, Colman R, Shell K M, Kiehl J T and Shields C A 2008 Quantifying climate feedbacks using radiative kernels; J. Clim. 21(14) 3504–3520, https://doi.org/10.1175/2007JCLI2110.1.

    Article  Google Scholar 

  • Stephens G L, O’Brien D, Webster P J, Pilewski P, Kato S and Li J 2015 The albedo of Earth; Rev. Geophys. 53(1) 141–163, https://doi.org/10.1002/2014RG000449.

    Article  Google Scholar 

  • Ward J L, Flanner M G, Bergin M, Dibb J E, Polashenski C M, Soja A J and Thomas J L 2018 Modelled response of greenland snowmelt to the presence of biomass burning-based absorbing aerosols in the atmosphere and snow; J. Geophys. Res.: Atmos. 123(11) 6122–6141, https://doi.org/10.1029/2017JD027878.

  • Warren S G and Brandt R E 2008 Optical constants of ice from the ultraviolet to the microwave: A revised compilation; J. Geophys. Res.: Atmos. 113(D14), https://doi.org/10.1029/2007JD009744.

  • Warren S G and Wiscombe W J 1980 A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols; J. Atmos. Sci. 37(12) 2734–2745, https://doi.org/10.1175/1520-0469(1980)037<2734:AMFTSA>2.0.CO;2.

  • Winton M 2006 Surface albedo feedback estimates for the AR4 climate models; J. Clim. 19(3) 359–365, https://doi.org/10.1175/JCLI3624.1.

    Article  Google Scholar 

  • Wiscombe W J and Warren S G 1980 A model for the spectral albedo of snow. I: Pure snow; J. Atmos. Sci. 37(12) 2712–2733, https://doi.org/10.1175/1520-0469(1980)037<2712:AMFTSA>2.0.CO;2.

  • Yue S, Pilon P and Cavadias G 2002 Power of the Mann–Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series; J. Hydrol. 259(1) 254–271, https://doi.org/10.1016/S0022-1694(01)00594-7.

    Article  Google Scholar 

Download references

Acknowledgement

This work was partially supported by the DST-INSPIRE Faculty Award.

Author information

Authors and Affiliations

Authors

Contributions

DS performed conceptualization, methodology, analysis, writing-reviewing and editing of the manuscript.

Corresponding author

Correspondence to D Singh.

Additional information

Communicated by C Gnanaseelan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, D. Determination of surface albedo and snow/ice content variation using the MODIS data in the past two decades (2001–2020). J Earth Syst Sci 130, 80 (2021). https://doi.org/10.1007/s12040-021-01592-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-021-01592-4

Keywords

Navigation