Skip to main content
Log in

A Simplified Method for Calculating Vertical Earth Pressure on Rigid Load Shedding Culvert Crown Underneath the Embankment

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

For calculating the vertical earth pressure on the crown of a load shedding culvert (LSC) underneath the embankment fill, an analytical method is proposed in this paper. It can determine the corresponding position on the slip surface when the shear stress of the embankment fill on the slip surface just reaches the limit value. The method proposed in this paper considers the fact that the linearly elastic–perfectly plastic model is closer to the shear stress–strain model of embankment fill on the slip surface. According to the stress state of the embankment fill on the slip surface, the lateral earth pressure coefficient expression is derived from the geometric relationship of the Mohr's circle, in which the internal friction angle is considered as the independent variable. The stress states of the differential elements of embankment fill over LSC crown are analysed through equilibrium considerations. Thus, the analytical method for calculating the vertical earth pressure on the crown of LSC is obtained. The calculation examples are presented and compared with numerical results of FLAC 2D, which demonstrates that the difference between the proposed analytical and the numerical results is less than 10%. The results show that as the internal friction angle of embankment fill, the height of load shedding block (LSB) and the ratio of elastic modulus of the embankment fill to elastic modulus of the compressible material layer (Ef /Es) increase, the vertical earth pressure on the crown of the LSC decreases. The phenomenon is because the shear stress of the embankment fill on the slip surface over the LSC crown mostly reaches the limit value, such that the most of loads of the central fill mass overburdening the LSH surface are transferred to the adjacent fill masses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The corresponding author confirms that all of the content, figures (drawings, charts, photographs, etc.), and tables in the submitted work are either original work created by the authors listed on the manuscript or work for which permission to reuse has been obtained from the creator. The data used to support the findings of this study are available from the corresponding author upon request, and the readers can access the data supporting the conclusions of the study.

References

  1. Beben, D.; Manko, Z.: Static load tests of a corrugated steel plate arch with relieving slab. J. Bridg. Eng. 13(4), 362–376 (2008). https://doi.org/10.1061/(ASCE)1084-0702(2008)13:4(362)

    Article  Google Scholar 

  2. Ahmed, M.R.; Tran, V.D.H.; Meguid, M.A.: On the role of geogrid reinforcement in reducing earth pressure on buried pipes: experimental and numerical investigations. Soils Found. 55(3), 588–599 (2015). https://doi.org/10.1016/j.sandf.2015.04.010

    Article  Google Scholar 

  3. Ma, Q.; Zheng, J.J.; Xiao, H.L.: Analysis of pressure on the roof of a culvert underneath a ditch with compressible material covered by a geosynthetic layer. Eur. J. Environ. Civ. Eng. (2019). https://doi.org/10.1080/19648189.2018.1564703

    Article  Google Scholar 

  4. Ma, Q.; Ku, Z.; Xiao, H.L.: Model tests of earth pressure on buried rigid pipes and flexible pipes underneath expanded polystyrene (EPS). Adv. Civ. Eng. (2019). https://doi.org/10.1155/2019/9156129

    Article  Google Scholar 

  5. Horvath, J.S.: Expanded polystyrene (EPS) geofoam: an introduction to material behavior. Geotext. Geomembr. 13(4), 263–280 (1994). https://doi.org/10.1016/0266-1144(94)90048-5

    Article  Google Scholar 

  6. Ma, Q.; Fu, H.F.; Xiao, H.L.; Liu, Y.L.; Zhang, J.; Deng, Q.: Model test study on mechanical properties of pipe under the soil freeze-thaw condition. Cold Reg. Sci. Technol. 174, 103040 (2020). https://doi.org/10.1016/j.coldregions.2020.103040

    Article  Google Scholar 

  7. Bourque, S.W.: Centrifuge and numerical modelling of induced trench twin conduits. MSc Thesis, University of New Brunswick, Fredericton, Canada (2002)

  8. Chen, B.G.; Song, D.B.; Mao, X.Y.; Chen, E.J.; Zhang, J.: Model test and numerical simulation on rigid load shedding culvert backfilled with sand. Comput. Geotech. 79, 31–40 (2016). https://doi.org/10.1016/j.compgeo.2016.05.026

    Article  Google Scholar 

  9. Janssen, H.: Versuche über getreidedruck in silozellen. Zeitschrift Des Vereines Deutscher Ingenieure 39(35), 1045–1049 (1895)

    Google Scholar 

  10. Marston, A.: The theory of loads on pipes in ditches and tests of cement and clay drain tile and sewer pipe. Bulletin 31 (1913).

  11. Spangler, M.G.: Underground conduits—an appraisal of modern research. Trans. Am. Soc. Civ. Eng. 113(1), 316–345 (1948)

    Article  Google Scholar 

  12. Spangler, M.G.: Stresses pressure pipelines and protective casing pipes. J. Struct. Div. 82, 1–33 (1956)

    Article  Google Scholar 

  13. Terzaghi, K.: Theoretical Soil Mechanics, p. 66–76. Wiley, New York, NY, USA (1943)

    Book  Google Scholar 

  14. McNulty, J.W.: An experiment study of arching in sand. PhD Thesis, University of Illinois at Urbana-Champaign, Urbana, USA (1965)

  15. McKelvey, J.A.: The anatomy of soil arching. Geotext. Geomembr. 13(5), 317–329 (1994). https://doi.org/10.1016/0266-1144(94)90026-4

    Article  Google Scholar 

  16. Ma, Q.; Ku, Z.; Xiao, H.L.; Hu, B.: Calculation of earth pressure on culvert underlying flexible subgrade. Results Phys. 12, 535–542 (2019). https://doi.org/10.1016/j.rinp.2018.11.100

    Article  Google Scholar 

  17. Song, D.B.; Chen, B.G.; Khan, A.: Analytical solution of the vertical earth pressure on load-shedding culvert under high fill. Comput. Geotech. 122, 103495 (2020). https://doi.org/10.1016/j.compgeo.2020.103495

    Article  Google Scholar 

  18. Rui, R.; van Tol, A.F.; Xia, Y.Y.; van Eekelen, S.J.M.: Investigation of soil-arching development in dense sand by 2D model tests. Geotech. Test. J. 39(3), 20150130 (2016). https://doi.org/10.1520/GTJ20150130

    Article  Google Scholar 

  19. Rui, R.; Han, J.; van Eekelen, S.J.M.; Wan, Y.: Experimental investigation of soil-arching development in unreinforced and geosynthetic-reinforced pile-supported embankments. J. Geotech. Geoenviron. Eng. 145(3), 04018103 (2019). https://doi.org/10.1061/(ASCE)GT.1943-5606.0002000

    Article  Google Scholar 

  20. Low, B.K.; Tang, S.K.; Choa, V.: Arching in piled embankments. J. Geotech. Eng. 120(11), 1917–1938 (1994). https://doi.org/10.1016/0148-9062(95)92545-S

    Article  Google Scholar 

  21. Pipatpongsa, T.; Heng, S.: Granular arch shapes in storage silo determined by quasi-static analysis under uniform vertical pressure. J. Solid Mech. Mater. Eng. 4(8), 1237–1248 (2010). https://doi.org/10.1299/jmmp.4.1237

    Article  Google Scholar 

  22. Xu, Y.; Zhang, L.: Breaching parameters for earth and rockfill dams. J. Geotech. Geoenviron. Eng. 135(12), 1957–1970 (2009). https://doi.org/10.1061/(ASCE)GT.1943-5606.0000162

    Article  Google Scholar 

  23. Maher, K.; Tadros, M.; Benak, J.V.: Soil pressure on box culverts. ACI Struct. J. 86(4), 439–500 (1989)

    Google Scholar 

  24. McGuigan, B.L.; Valsangkar, A.J.: Centrifuge testing and numerical analysis of box culverts installed in trenches. Can. Geotech. J. 47(2), 147–163 (2010). https://doi.org/10.1139/T09-085

    Article  Google Scholar 

  25. Kim, K.; Yoo, C.H.: Design loading on deeply buried box culverts. J. Geotech. Geoenviron. Eng. 131(1), 20–27 (2005). https://doi.org/10.1061/(asce)1090-0241(2005)131:1(20)

    Article  Google Scholar 

  26. McAffee, R.P.; Valsangkar, A.J.: Field performance, centrifuge testing, and numerical modelling of an induced trench installation. Can. Geotech. J. 45(1), 85–101 (2008). https://doi.org/10.1139/T07-086

    Article  Google Scholar 

  27. Krynine, D.: Discussion of stability and stiffness of cellular cofferdams by Karl Terzaghi. Trans. Am. Soc. Civ. Eng. 110(1), 1120–1186 (1945)

    Article  Google Scholar 

  28. Bulson, P.S.: Buried structures: static and dynamic strength. Eng. Geol. 22(4), 381–381 (1985). https://doi.org/10.1016/0013-7952(86)90008-6

    Article  Google Scholar 

  29. Pirapakaran, K.; Sivakugan, N.: Arching within hydraulic fill stopes. Geotech. Geol. Eng. 25(1), 25–35 (2007). https://doi.org/10.1007/s10706-006-0003-6

    Article  Google Scholar 

  30. Li, L.; Aubertin, M.: An analytical solution for the nonlinear distribution of effective and total stresses in vertical backfilled stopes. Geomech. Geoeng. 5(4), 237–245 (2010). https://doi.org/10.1080/17486025.2010.497871

    Article  Google Scholar 

  31. Chen, B.G.; Zheng, J.J.; Han, J.: Experimental study and numerical simulation on concrete box culverts in trenches. J. Perform. Constr. Facil. 24, 223–234 (2010). https://doi.org/10.1061/(ASCE)CF.1943-5509.0000098

    Article  Google Scholar 

  32. Li, L.; Aubertin, M.; Belem, T.: Formulation of a three dimensional analytical solution to evaluate stresses in backfilled vertical narrow openings. Can. Geotech. J. 42(6), 1705–1717 (2005). https://doi.org/10.1139/t05-084

    Article  Google Scholar 

  33. Rui, R.; van Tol, A.F.; Xia, Y.Y.; van Eekelen, S.J.M.; Hu, G.: Evolution of soil arching: 2D analytical models. Int. J. Geomech. 18(6), 04018056 (2018). https://doi.org/10.1061/(ASCE)GM.1943-5622.0001169

    Article  Google Scholar 

  34. Xu, C.J.; Chen, Q.Z.; Luo, W.J.; Liang, L.J.: Analytical solution for estimating the stress state in backfill considering patterns of stress distribution. Int. J. Geomech. 19(1), 1943–5622 (2019). https://doi.org/10.1061/(ASCE)GM.1943-5622.0001332

    Article  Google Scholar 

Download references

Acknowledgements

The work in this paper was supported by grants from the National Natural Science Foundation of China [NSFC] [No. 51678223, 52078194], Hubei Provincial Education Department Key Project [No. D20171402], and Green Industrial Project of Hubei University of Technology [YXQN2017001]. The authors would like to express their appreciation to this financial assistance.

Author information

Authors and Affiliations

Authors

Contributions

Qiang Ma contributed to conceptualization and writing—review, supervision. Huafei Fu contributed to methodology and writing—original draft. Henglin Xiao was involved in data curation and validation. Chuheng Zhong was involved in writing—review and editing.

Corresponding author

Correspondence to Qiang Ma.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Q., Fu, H., Xiao, H. et al. A Simplified Method for Calculating Vertical Earth Pressure on Rigid Load Shedding Culvert Crown Underneath the Embankment. Arab J Sci Eng 46, 11101–11112 (2021). https://doi.org/10.1007/s13369-021-05680-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05680-x

Keywords

Navigation