Skip to main content
Log in

Effect of co-doped (Ni2+:Co2+) in CdS nanoparticles: investigation on structural and magnetic properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Facile chemical precipitation method was used to synthesize Ni (4%) doped and Co (4%): Ni (4%) co-doped CdS nanoparticles. Polyvinylpyrrolidone (PVP) was used as a surfactant to control the particles size and growth rate. The synthesized co-doped sample showed mixed structures of cubic and hexagonal which was confirmed by X-ray diffraction (XRD) study. Average crystallite size is to be 4.2 nm and 3.3 nm for Ni doped and Co:Ni co-doped CdS nanoparticles, respectively. Transmission electron microscopy (TEM) results showed spherical shape with homogeneous particle size distribution of the samples. Due to reduction the particle size, the absorption peak of co-doped CdS shows a significant blue shifting compared to the single metal ion doped CdS nanoparticles. Electron paramagnetic resonance (EPR) spectroscopy was used to study the magnetic g-factor, covalency parameter and magnetic properties of the samples. Anti-ferromagnetic magnetic signal was observed for doped and co-doped samples using Vibrating Sample Magnetometer (VSM) at room temperature. Thermal stability and lattice deformation of the samples were studied using Thermo Gravimetric–Differential Thermal Analysis (TG–DTA). The obtained room temperature based magnetic properties of CdS:Co:Ni nanoparticles demonstrate it could be suitable for spintronic and optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. I.F. Ertis, I. Boz, Mod. Res. Catal. 6, 1–14 (2017)

    Article  Google Scholar 

  2. S.D. Sarma, J. Fabian, I. Zutic, J. Supercond. 16(4), 697–705 (2003)

    Article  ADS  Google Scholar 

  3. I.S. Elashmawi, A.M. Abdelghany, N.A. Hakeem, J. Mater. Sci. Mater. Electron 24(8), 2956–2961 (2013)

    Article  Google Scholar 

  4. S. Kumar, N.S. Negi, S.C. Katyal, S. Pankaj, S. Vineet, J. Magnm. Magn. Matls. 367, 1–8 (2014)

    Article  ADS  Google Scholar 

  5. P. Elavarthi, A. Anil Kumar, G. Murali, D. Amaranatha Reddy, K.R. Gunasekhar, J. Alloys Compd. 656, 510–517 (2016)

    Article  Google Scholar 

  6. Z. Liu, X. Wang, H. Zhu, Phys. Chem. Chem. Phys. 17, 13117–13122 (2015)

    Article  Google Scholar 

  7. M. Johnson, J. Phys. Chem. B 109, 14278–14291 (2005)

    Article  Google Scholar 

  8. F. Xiuli, W. Zhipei, M. Lei, L. Zhang, H. Chen, W. Tang, Z. Peng, Mater. Lett. 104, 76–79 (2013)

    Article  Google Scholar 

  9. R. Sathyamoorthy, P. Sudhagar, A. Balerna, C. Balasubramanian, S. Bellucci, A.I. Popov, K. Asokan, J. Alloys Compd. 493, 240–245 (2010)

    Article  Google Scholar 

  10. A. Mercy, A. Jesper Anandhi, K. Sakthi Murugesan, R. Jayavel, R. Kanagadurai, B. Milton Boaz, J. Alloys Compd. 593, 213–219 (2014)

    Article  Google Scholar 

  11. N.H. Patel, M.P. Deshpande, S.H. Chaki, Metals Sci. Semicond. Process. 31, 272–280 (2015)

    Article  Google Scholar 

  12. N.H. Patel, M.P. Deshpande, S.H. Chaki, J. Mater. Sci. Metals Electron. 29, 11394–11403 (2018)

    Article  Google Scholar 

  13. A.K. Chawla, S. Singha, H.O. Gupta, R. Chandra, Thin Solid Films 520(5), 1437–1441 (2011)

    Article  ADS  Google Scholar 

  14. L. Saravanan, A. Pandurangan, R. Jayavel, J. Nanoparticle Res. 13(4), 1621–1628 (2011)

    Article  ADS  Google Scholar 

  15. G. Giribabu, G. Murali, D. Amaranatha Reddy, C. Liu, R.P. Vijayalakshmi, J. Allays Compd. 581, 363–368 (2013)

    Article  Google Scholar 

  16. S. Kumar, S. Kumar, S. Jain, N.K. Verma, Appl Nanosci. 2, 127–131 (2012)

    Article  ADS  Google Scholar 

  17. K. Siva Kumar, A. Divya, P. Sreedhara Reddy, S. Uthanna, R. Martins, E. Elangovan, Acta Phys. Pol. A 120, 52–54 (2011)

    Article  ADS  Google Scholar 

  18. L. Saravanan, S. Diwakar, R. Mohankumar, A. Pandurangan, R. Jayavel, Nanomater. Nanotechnol. 1(2), 42–48 (2011)

    Google Scholar 

  19. M. Ristić, S. Popović, M. Ivanda, S. Musić, Matls Lett. 109, 179–181 (2013)

    Article  Google Scholar 

  20. S. Muruganandam, G. Anbalagan, G. Murugadoss, Appl Nanosci. 5, 245–253 (2015)

    Article  ADS  Google Scholar 

  21. S. Muruganandam, G. Anbalagan, G. Murugadoss, Optik 131, 826–837 (2017)

    Article  ADS  Google Scholar 

  22. M. Kul, Vacuum 107, 213–218 (2014)

    Article  ADS  Google Scholar 

  23. S. Muruganandam, G. Anbalagan, G. Murugadoss, Indian J. Phys. 89(8), 835–843 (2015)

    Article  ADS  Google Scholar 

  24. H. Liu, B. Zhang, H. Shi, Y. Tang, K. Jiao, X. Fu, J. Mater. Chem. 18, 2573–2580 (2008)

    Article  Google Scholar 

  25. E. Esakkiraj, S.P. Sheik Abdul Kadhar, J. Henry, K. Mohanraj, S. Kannan, S. Barathan, G. Sivakumar, Optik 124, 5229–5231 (2013)

    Article  ADS  Google Scholar 

  26. Z.B. Sun, X.Z. Dong, W.Q. Chen, S. Shoji, X.M. Duan, S. Kawata, J. Nanotechnol. 19(3), 035610–035611 (2008)

    Article  Google Scholar 

  27. N.H. Patel, M.P. Deshpande, S.H. Chaki, H.R. Keharia, Mater. Focus. 6, 398–406 (2017)

    Article  Google Scholar 

  28. E. Bacaksiz, M. Tomakin, M. Altunbas, M. Parlak, T.C. Olakog˘lu, Phys. B 403, 3740–3745 (2008)

    Article  ADS  Google Scholar 

  29. N.V. Vasileva, P.A. Gerus, V.O. Sokolov, V.G. Plotnichenko, J. Phys. D Appl. Phys. 45, 1–8 (2012)

    Article  Google Scholar 

  30. L.E. Brus, J. Chem. Phys. 79, 5566–5571 (1983)

    Article  ADS  Google Scholar 

  31. G.N. Neilo, A.A. Prokhorov, S.N. Lykin, A.S. Karnachev, A.D. Prokhorov, Phys. Status Solidi 236(3), 640–644 (2003)

    Article  Google Scholar 

  32. E. Duin, Electron Paramag. Resonan. Theor. www.auburn.edu.

  33. S.P. Patel, J.C. Pivin, R. Chandra, D. Kanjilal, L. Kumar, Vacuum 111, 150–156 (2015)

    Article  ADS  Google Scholar 

  34. A. Sayari, L. El Mir, Metals Sci. Pold. 35(3), 454–462 (2017)

    ADS  Google Scholar 

  35. N. Raman, S. Ravichandran, C. Thangaraja, J. Chem. Sci. 116(4), 215–219 (2004)

    Article  Google Scholar 

  36. N. Sathiya Priya, S.S. Packiam Kamala, V. Anbarasu, S. Anbuchudar Azhagan, R. Saravanakumar, Metals Lett. 220, 161–164 (2018)

    Article  Google Scholar 

  37. K. Deka, M.P.C. Kalita, J. Alloys Compd. 757, 209–220 (2018)

    Article  Google Scholar 

  38. Y.K. Peng, S.C.E. Tsang, P.T. Chou, Mater. Today 19, 336–348 (2016)

    Article  Google Scholar 

  39. J. Zhang, Q. Yun, Q. Wang, Modern Appl. Sci. 4(11), 124–130 (2010)

    Article  Google Scholar 

  40. M.B. Jungfleisch, W. Zhang, A. Hoffmann, Phys. Lett. A 382(13), 865–871 (2018)

    Article  ADS  Google Scholar 

  41. J.K. Furdyna, Appl. Phys. 64, R29–R64 (1988)

    Article  ADS  Google Scholar 

  42. Y. Dwarakanadha Reddy, D. Sreekantha Reddy, B.K. Reddy, R.V.S.S.N. Ravikumar, D.R. Reddy, J. Alloys Compd. 470, 12–15 (2009)

    Article  Google Scholar 

  43. P. Liu, V.M.H. Ng, Z. Yao, J. Zhou, Y. Lei, Z. Yang, H. Lv, L.B. Kong, ACS Appl. Mater. Interfaces 9, 16404–16416 (2017)

    Article  Google Scholar 

  44. P. Liu, Z. Yao, J. Zhou, Z. Yang, L.B. Kong, J. Mater. Chem. C 4, 9738–9749 (2016)

    Article  Google Scholar 

  45. G. Murugadoss, J. Lumince 131, 2216–2223 (2011)

    Article  ADS  Google Scholar 

  46. M. Rajesh Kumar, G. Murugadoss, J. Lumince 146, 325–332 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

One of the author Dr. S. Muruganandam would like to thank, Prof. Dr. G. Anbalagan, Department of Nuclear Physics, University of Madras and Dr. G. Ra. Gokul, Managing Director, Meenakshi Ammal Education Trust, Chennai, Tamilnadu, India for their supporting and valuable suggestion. Dr. G. Murugadoss would like to acknowledge the Sathyabama institute of science and technology for provided lap facilities. 

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Muruganandam or G. Murugadoss.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muruganandam, S., Parivathini, K. & Murugadoss, G. Effect of co-doped (Ni2+:Co2+) in CdS nanoparticles: investigation on structural and magnetic properties. Appl. Phys. A 127, 400 (2021). https://doi.org/10.1007/s00339-021-04555-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04555-0

Keywords

Navigation