Skip to main content
Log in

Magnetic hardening and exchange bias effect in dual-phase Co3Mn nanowire arrays

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Mn-based magnetic alloys and compounds having large magnetic anisotropy are currently focused as alternate materials for various spintronic applications. In this work, magnetization behavior of Co3Mn alloy nanowires (NWs) was investigated by fabricating with well-known template-based electrodeposition method where the electrodeposition was carried out at sinusoidal high voltage. The NWs were annealed at 300 °C and 400 °C with 10 °C/min heating and cooling rate to eliminate the crystal defects caused by high-voltage deposition. Crystal structure analysis displayed the as-deposited NWs were crystallized into a face-centered cubic (fcc) structure with crystallite size 24.93 nm, while the hexagonal close pack (hcp) phase with crystallite size 38.61 nm was induced after annealing. The as-deposited NWs exhibited the soft ferromagnetic behavior with coercivity (\(H_{{\text{C}}}\)) = 128 Oe and saturation magnetization (\(M_{{\text{S}}}\)) = 311 emu/cm3 along axial direction but magnetic hardening induced after annealing with \(H_{{\text{C}}}\) = 688 Oe and \(M_{{\text{S}}}\) = 228 emu/cm3 caused by strong pinning effects and elastic coupling between hcp and fcc phase. Interestingly, the asymmetric shift in MH-loops of annealed NWs was noted below 150 K when the temperature-dependent MH-loops measured after cooling the sample in the magnetic field. This observation confirmed the existence of exchange bias effect in NWs caused by short-range exchange interaction between ferromagnetic fcc phase and antiferromagnetic hcp phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. N. Môri, T. Mitsui, J. Phys. Soc. Jpn. 25, 82–88 (1968)

    Article  ADS  Google Scholar 

  2. A. Menshikov, G. Takzei, Y.A. Dorofeev, V. Kazantsev, A. Kostyshin, I. Sych, Zh. Eksp, Teor. Fiz. 89, 1269–1279 (1985)

    Google Scholar 

  3. W. Abdul-Razzaq, J.S. Kouvel, Phys. Rev. B 35, 1764–1767 (1987)

    Article  ADS  Google Scholar 

  4. M. Matsui, T. Ido, K. Sato, K. Adachi, J. Phys. Soc. Jpn. 28, 791–791 (1970)

    Article  ADS  Google Scholar 

  5. D. Wu, G. Liu, C. Jing, Y. Wu, D. Loison, G. Dong, X. Jin, D.-S. Wang, Phys. Rev. B 63, 214403 (2001)

    Article  ADS  Google Scholar 

  6. D. Wu, G. Liu, C. Jing, Y. Wu, G. Dong, X. Jin, J. Appl. Phys. 89, 521–523 (2001)

    Article  ADS  Google Scholar 

  7. J. Cable, Y. Tsunoda, J. Magn. Magn. Mater. 140, 93–94 (1995)

    Article  ADS  Google Scholar 

  8. D.J. Rogers, Y. Maeda, K. Takei, J. Appl. Phys. 78, 5842–5844 (1995)

    Article  ADS  Google Scholar 

  9. R. Snow, H. Bhatkar, A. N’Diaye, E. Arenholz, Y. Idzerda, J. Magn. Magn. Mater. 419, 490–493 (2016)

    Article  ADS  Google Scholar 

  10. T.H. Kim, J.S. Moodera, Phys. Rev. B 66, 104436 (2002)

    Article  ADS  Google Scholar 

  11. K. Kunimatsu, T. Tsuchiya, T. Roy, K. Elphick, T. Ichinose, M. Tsujikawa, A. Hirohata, M. Shirai, S. Mizukami, Appl. Phys. Express 13, 083007 (2020)

    Article  ADS  Google Scholar 

  12. J.S. Kouvel, J. Phys. Chem. Solids 16, 107–114 (1960)

    Article  ADS  Google Scholar 

  13. S. Giri, M. Patra, S. Majumdar, J. Phys. Condens. Matter 23, 073201 (2011)

    Article  ADS  Google Scholar 

  14. J. Cable, Y. Tsunoda, Phys. Rev. B 50, 9200 (1994)

    Article  ADS  Google Scholar 

  15. A. Safeer, N. Ahmad, S. Khan, L.A. Azam, D. Bashir, J. Appl. Phys. 125, 034302 (2019)

    Article  ADS  Google Scholar 

  16. M. Awais, N. Ahmad, S. Khan, A. Safeer, K. Javed, I. Murtaza, A. Majid, J. Magn. Magn. Mater. 474, 207–214 (2019)

    Article  ADS  Google Scholar 

  17. H. Cao, L. Wang, Y. Qiu, Q. Wu, G. Wang, L. Zhang, X. Liu, ChemPhysChem 7, 1500–1504 (2006)

    Article  Google Scholar 

  18. H. Yang, Y. Li, M. Zeng, W. Cao, W.E. Bailey, R. Yu, Sci. Rep. 6, 20427 (2016)

    Article  ADS  Google Scholar 

  19. H. Schloerb, V. Haehnel, M.S. Khatri, A. Srivastav, A. Kumar, L. Schultz, S. Faehler, Phys. Status Solidi 247, 2364–2379 (2010)

    Article  Google Scholar 

  20. S. Tang, W. Chen, M. Lu, S. Yang, F. Zhang, Y. Du, Chem. Phys. Lett. 384, 1–4 (2004)

    Article  ADS  Google Scholar 

  21. W. Chen, S. Tang, M. Lu, Y. Du, J. Phys. Condens. Matter 15, 4623 (2003)

    Article  ADS  Google Scholar 

  22. A. Safeer, L.A. Azam, D. Bashir, S. Khan, B. Parveen, N. Ahmad, Phys. B Condens. Matter 586, 412138 (2020)

    Article  Google Scholar 

  23. Q. Zhan, Z. Chen, D. Xue, F. Li, H. Kunkel, X. Zhou, R. Roshko, G. Williams, Phys. Rev. B 66, 134436 (2002)

    Article  ADS  Google Scholar 

  24. H. Zeng, R. Skomski, L. Menon, Y. Liu, S. Bandyopadhyay, D.J. Sellmyer, Phys. Rev. B 65, 134426 (2002)

    Article  ADS  Google Scholar 

  25. J.A. De Toro, P.S. Normile, S.S. Lee, D. Salazar, J.L. Cheong, P. Muñiz, J.M. Riveiro, M. Hillenkamp, F. Tournus, A. Tamion, J. Phys. Chem. C 117, 10213–10219 (2013)

    Article  Google Scholar 

  26. G. Muscas, G. Concas, S. Laureti, A. Testa, R. Mathieu, J. De Toro, C. Cannas, A. Musinu, M. Novak, C. Sangregorio, Phys. Chem. Chem. Phys. 20, 28634–28643 (2018)

    Article  Google Scholar 

  27. M. Acet, E. Duman, E.F. Wassermann, L. Manosa, A. Planes, J. Appl. Phys. 92, 3867–3871 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgment

Authors would like to acknowledge the Higher Education Commission, Pakistan, and International Islamic University, Islamabad, Pakistan, for the Financial Support.

Author information

Authors and Affiliations

Authors

Contributions

Liaqat Ali Azam & Affan Safeer: Conceptualization, Resources, Formal analysis, Virtualization, Writing—Original Draft, Review & Editing. Naeem Ahmad: Validation, Supervision. Andrés Rosales-Rivera: Investigation. Suleman Khan & Imran Murtaza: Project administration.

Corresponding author

Correspondence to Naeem Ahmed.

Ethics declarations

Conflict of interest

No conflict of interest exists in the submission of the manuscript and all authors have approved the manuscript for the publication. The authors would like to declare that the work described is original research that has not been published previously and is not under consideration for publication elsewhere, in whole or in part.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azam, L.A., Safeer, A., Ahmed, N. et al. Magnetic hardening and exchange bias effect in dual-phase Co3Mn nanowire arrays. Appl. Phys. A 127, 398 (2021). https://doi.org/10.1007/s00339-021-04529-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04529-2

Keywords

Navigation