Skip to main content

Advertisement

Log in

Structural Optimization Design of a Typical Adhesive Bonded Honeycomb-Core Sandwich T-joint in Side Bending Using Multi-Island Genetic Algorithm

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Sandwich structure T-joints are increasingly broadly applied in aviation and aerospace industries due to the need for lightweight design. This paper deals with the lightweight optimization of a typical adhesively bonded Nomex honeycomb-core sandwich T-joint in side bending load, considering the strength constraints. The optimization problem, with discrete and continuous design variables, is a compound optimization problem involving size optimization for the whole structure and stacking sequence optimization for multiple variable-thickness composite laminates. A self-adjusted parametric modeling with user-defined suppression process is proposed. An integrated combination of progressive damage model methodology, self-adjusted parametric modeling with user-defined suppression process and multi-island genetic algorithm is applied for the optimization problem. The optimization result showed 30.75% weight reduction compared to the original T-joint configuration. On the basis of history data, we investigate the correlations between design variables and concerned constraint variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Bozhevolnaya, E., Lyckegaard, A., Thomsen, O.T.: Novel design of foam core junctions in sandwich panels. Compos. B. Eng. 39, 185–190 (2008)

    Article  Google Scholar 

  2. Stickler, P.B., Ramulu, M.: Investigation of mechanical behavior of transverse stitched T-joints with PR520 resin in flexure and tension. Compos. Struct. 52, 307–314 (2001)

    Article  Google Scholar 

  3. Guo, S., Morishima, R.: Numerical analysis and experiment of composite sandwich T-joints subjected to pulling load. Compos. Struct. 94, 229–238 (2012)

    Article  Google Scholar 

  4. Khalili, S.M.R., Ghaznavi, A.: Numerical analysis of adhesively bonded T-joints with structural sandwiches and study of design parameters. Int. J. Adhes. Adhes. 31, 347–356 (2011)

    Article  CAS  Google Scholar 

  5. Khalili, S.M.R., Ghaznavi, A.: Behavior and failure modes of sandwich T-joint using cohesive zone material model and contact elements. Appl. Compos. Mater. 20, 41–54 (2013)

    Article  Google Scholar 

  6. Khosravani, M.R.: Influences of defects on the performance of adhesively bonded sandwich joints. Key. Eng. Mater. 89, 45–50 (2018)

  7. Khosravani, M.R., Anders, D., Weinberg, K.: Influence of strain rate on fracture behavior of sandwich composite T-joints. Eur. J. Mech. A. Solids (2019). https://doi.org/10.1016/j.euromechsol.2019.103821

    Article  Google Scholar 

  8. Sun., C.T.: Failure modes and load transfer in sandwich T-joints. J. Sandw. Struct. Mater. 2, 225–245 (2000)

    Article  Google Scholar 

  9. Saeid, A.A., Donaldson, S.L.: Experimental and finite element investigations of damage resistance in biomimetic composite sandwich T-joints. Materials. 9, 510 (2016)

    Article  Google Scholar 

  10. Ghiasi, H., Pasini, D., Lessard, L.: Optimum stacking sequence design of composite materials Part I: Constant stiffness design. Compos. Struct. 90, 1–11 (2009)

    Article  Google Scholar 

  11. Ghiasi, H., Fayazbakhsh, K., Pasini, D., et al.: Optimum stacking sequence design of composite materials Part II: Variable stiffness design. Compos. Struct. 93, 1–13 (2011)

    Article  Google Scholar 

  12. Naik, G.N., Gopalakrishnan, S., Ganguli, R.: Design optimization of composites using genetic algorithms and failure mechanism based failure criterion. Compos. Struct. 83, 354–367 (2008)

    Article  Google Scholar 

  13. Zhu, X., He, R., Lu, X., et al.: A optimization technique for the composite strut using genetic algorithms. Mater. Design. 65, 482–488 (2015)

    Article  CAS  Google Scholar 

  14. Yang, J., Song, B., Zhong, X., et al.: Optimal design of blended composite laminate structures using ply drop sequence. Compos. Struct. 135, 30–37 (2016)

    Article  Google Scholar 

  15. Lund, E., Stegmann, J.: On structural optimization of composite shell structures using a discrete constitutive parametrization. Wind Energy. 8, 109–124 (2005)

    Article  Google Scholar 

  16. Matsuzaki, R., Todoroki, A.: Stacking-sequence optimization using fractal branch-and-bound method for unsymmetrical laminates. Compos. Struct. 78, 537–550 (2007)

    Article  Google Scholar 

  17. Zhao, J., Fan, X., Sun, Q.: Stacking sequence optimization of composite laminates for maximum buckling load using permutation search algorithm. Compos. Struct. 121, 225–236 (2015)

    Article  Google Scholar 

  18. Albazzan, M.A., Harik, R., Tatting, B.F., et al.: Efficient design optimization of nonconventional laminated composites using lamination parameters: A state of the art. Compos. Struct. 209, 362–374 (2019)

    Article  Google Scholar 

  19. Niu, Y., Xu, X., Guo, S.: Structural optimization design of typical adhesive bonded sandwich T-joints based on progressive damage analysis and multi-island genetic algorithm. J. Sandwich Struct. Mater. (2020). https://doi.org/10.1177/1099636220962278

    Article  Google Scholar 

  20. Holland, J.H.: Genetic Algorithms and the Optimal Allocation of Trials. SIAM. J. Comput. 2, 88–105 (1973)

    Article  Google Scholar 

  21. Miki, M., Hiroyasu, T., Kaneko, M., et al.: A parallel genetic algorithm with distributed environment scheme. Proceedings of International Conference on Systems, Man, and Cybernetics. 1, 695–700 (1999). https://doi.org/10.1109/ICSMC.1999.814176

    Article  Google Scholar 

  22. Azzi, V.D., Tsai, S.W.: Anisotropic strength of composites. Exp. Mech. 5, 283–288 (1965)

    Article  Google Scholar 

  23. Tsai, S.W., Wu, E.M.: A general theory of strength for anisotropic materials. J. Compos. Mater. 5, 58–80 (1971)

    Article  Google Scholar 

  24. Hoffman, O.: The brittle strength of orthotropic materials. J. Compos. Mater. 1, 200–206 (1967)

    Article  Google Scholar 

  25. Hashin, Z.: Failure criteria for unidirectional fiber composites. J. Appl. Mech. 47, 329–334 (1980)

    Article  Google Scholar 

  26. Hashin, Z., Rotem, A.: A fatigue failure criterion for fiber reinforced materials. J. Compos. Mater. 7, 448–464 (1973)

    Article  Google Scholar 

  27. Puck, A., Schürmann, H.: Failure analysis of FRP laminates by means of physically based phenomenological models. Compos. Sci. Technol. 58, 1045–1067 (1998)

    Article  Google Scholar 

  28. Puck, A., Schürmann, H.: Failure analysis of FRP laminates by means of physically based phenomenological models. Compos. Sci. Technol. 62, 1633–1662 (2002)

    Article  Google Scholar 

  29. Cuntze, R.G., Freund, A.: The predictive capability of failure mode concept-based strength criteria for multidirectional laminates. Part A. Compos. Sci. Technol. 64, 343–377 (2004)

    Article  Google Scholar 

  30. Cuntze, R.G.: The predictive capability of failure mode concept-based strength criteria for multidirectional laminates. Part B. Compos. Sci. Technol. 63, 487–516 (2004)

    Article  Google Scholar 

  31. Cuntze, R.: The predictive capability of failure mode concept-based strength conditions for laminates composed of unidirectional laminae under static triaxial stress states. J. Compos. Mater. 46(19–20), 2563–2594 (2012)

    Article  Google Scholar 

  32. Labeas, G.N., Belesis, S.D., Diamantakos, I., et al.: Adaptative progressive damage modeling for large-scale composite structures. Int. J. Damage. Mech. 21, 441–462 (2012)

    Article  Google Scholar 

  33. Hou, J.P., Petrinic, N., Ruiz, C.: A delamination criterion for laminated composites under low-velocity impact. Compos. Sci. Technol. 61, 2069–2074 (2001)

    Article  Google Scholar 

  34. Hou, J.P., Petrinic, N., Ruiz, C., et al.: Prediction of impact damage in composite plates. Compos. Sci. Technol. 60, 273–281 (2000)

    Article  CAS  Google Scholar 

  35. Camanho, P.P.: A progressive damage model for mechanically fastened joints in composite laminates. J. Compos. Mater. 33, 2248–2280 (1999)

    Article  Google Scholar 

  36. Camanho, P.P., Davila, C.G.: Mixed-mode decohesion finite elements for the simulation of delamination in composite materials. NASA/TM-2002–211737, pp. 1–37 (2002)

  37. Sane, A.U., Padole, P.M., Manjunatha, C.M., et al.: Mixed mode cohesive zone modeling and analysis of adhesively bonded composite T-joint under pull-out load. J. Braz. Soc. Mech. Sci. 40, 167 (2018)

    Article  Google Scholar 

  38. Xu, Y.Y., Cheng, X.Q., Zhang, J.K., Li, Z.N.: Study on composite honeycomb sandwich structure formed t-joints under tensile load. Engineering Mechanics. 32, 243–256 (2015). https://doi.org/10.6052/j.issn.1000-4750.2013.12.1236

    Article  Google Scholar 

  39. Stein, N., Rosendahl, P.L., Becker, W.: Modelling load transfer and mixed-mode fracture of ductile adhesive composite joints. Int. J. Adhes. Adhes. 82, 299–310 (2018)

    Article  CAS  Google Scholar 

  40. Gleich, D.M., Van Tooren, M.J.L., Beukers, A.: Analysis and evaluation of bondline thickness effects on failure load in adhesively bonded structures. J. Adhes. Sci. Technol. 15, 1091–1101 (2001)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiwu Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, Y., Xu, X. & Guo, S. Structural Optimization Design of a Typical Adhesive Bonded Honeycomb-Core Sandwich T-joint in Side Bending Using Multi-Island Genetic Algorithm. Appl Compos Mater 28, 1039–1066 (2021). https://doi.org/10.1007/s10443-021-09882-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-021-09882-2

Keywords

Navigation