Skip to main content

Advertisement

Log in

Analysis of Bi-stable Hexagonal Composite Laminate Under Thermal Load

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

This paper concerns the non-linear morphing behavior of composite laminate for creating asymmetric bi-stability in the symmetric geometry. The hexagonal and compound trapezoidal-hexagonal geometry are the proposed solution to create asymmetric bi-stability as new geometries. By creating asymmetric bi-stability, the strain energy of the two stable states will be different. This difference prevents continuous actuating between stable states and helps to obtain effectively control in the morphing process. The effects of laminate stacking sequence, temperature, and geometry on the strain energy and out of plane displacements of the two stable states are investigated. The non-linear finite element method is used for simulation, and the numerical results are validated with the experiments. Using hexagonal geometry allows the creation of tessellated surfaces consisting of the bi-stable and mono-stable sections that can be deformed in different directions and can be used in the adaptive structures such as reflector antenna or control surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Yao, M., Liu, P., Ma, L., Wang, H., Zhang, W.: Experimental study on broadband bistable energy harvester with L-shaped piezoelectric cantilever beam. Acta. Mech. Sin. 36, 557–577 (2020)

    Article  CAS  Google Scholar 

  2. Tan, T., Yan, Z., Ma, K., Liu, F., Zhao, L., & Zhang, W. (2020). Nonlinear characterization and performance optimization for broadband bistable energy harvester. Acta Mechanica Sinica, 1–14.

  3. Wang, B., Nie, G.H.: Bi-stable states of initially stressed elastic cylindrical shell structures with two piezoelectric surface layers. Acta. Mech. Sin. 31(5), 653–659 (2015)

    Article  CAS  Google Scholar 

  4. Coburn, B.H., Pirrera, A., Weaver, P.M., Vidoli, S.: Tristability of an orthotropic doubly curved shell. Compos. Struct. 96, 446–454 (2013)

    Article  Google Scholar 

  5. Panciroli, R., Nerilli, F.: Bistable morphing panels through SMA actuation. Procedia Structural Integrity 24, 593–600 (2019)

    Article  Google Scholar 

  6. Nicassio, F., Scarselli, G., Pinto, F., Ciampa, F., Iervolino, O., Meo, M.: Low energy actuation technique of bistable composites for aircraft morphing. Aerosp. Sci. Technol. 75, 35–46 (2018)

    Article  Google Scholar 

  7. Hu, J., Lin, S., Dai, F.: Pattern reconfigurable antenna based on morphing bistable composite laminates. IEEE Trans. Antennas Propag. 65(5), 2196–2207 (2017)

    Article  Google Scholar 

  8. Alfattani, R., & Lusk, C. (2020). Shape-Morphing Using Bistable Triangles With Dwell-Enhanced Stability. Journal of Mechanisms and Robotics, 12(5).

  9. Sales, T.D.P., Rade, D.A., Inman, D.J.: A morphing metastructure concept combining shape memory alloy wires and permanent magnets for multistable behavior. J. Braz. Soc. Mech. Sci. Eng. 42(3), 1–18 (2020)

    Article  Google Scholar 

  10. Li, H., Dai, F., Weaver, P.M., Du, S.: Bistable hybrid symmetric laminates. Compos. Struct. 116, 782–792 (2014)

    Article  Google Scholar 

  11. Daynes, S., Weaver, P.: Analysis of unsymmetric CFRP–metal hybrid laminates for use in adaptive structures. Compos. A Appl. Sci. Manuf. 41(11), 1712–1718 (2010)

    Article  Google Scholar 

  12. Chai, H., Li, Y., Zhang, Z., Sun, M., Wu, H., Jiang, S.: Systematic analysis of bistable anti-symmetric composite cylindrical shells and variable stiffness composite structures in hygrothermal environment. The International Journal of Advanced Manufacturing Technology 108, 1091–1107 (2020)

    Article  Google Scholar 

  13. Emam, S.A.: Snap through and free vibration of bistable composite laminates using a simplified Rayleigh-Ritz model. Compos. Struct. 206, 403–414 (2018)

    Article  Google Scholar 

  14. Zhang, Z., Li, Y., Yu, X., Li, X., Wu, H., Wu, H., Wu, H., Jiang, S., Chai, G.: Bistable morphing composite structures: A review. Thin-walled structures 142, 74–97 (2019)

    Article  Google Scholar 

  15. Zhang, Z., Pei, K., Sun, M., Wu, H., Yu, X., Wu, H., Jiang, S., Zhang, F.: A novel solar tracking model integrated with bistable composite structures and bimetallic strips. Compos. Struct. 248, 112506 (2020)

    Article  Google Scholar 

  16. Li, X., Zhang, Z., Sun, M., Wu, H., Zhou, Y., Wu, H., Jiang, S.: A magneto-active soft gripper with adaptive and controllable motion. Smart Mater. Struct. 30(1), 015024 (2020)

    Article  Google Scholar 

  17. Fazli, M., Sadr, M. H., & Ghashochi-Bargh, H. (2021). Analysis of the Bi-Stable Hybrid Laminate under Thermal Load. International Journal of Structural Stability and Dynamics, 2150069.

  18. Tawfik, S.A., Dancila, D.S., Armanios, E.: Planform effects upon the bistable response of cross-ply composite shells. Compos. A Appl. Sci. Manuf. 42(7), 825–833 (2011)

    Article  Google Scholar 

  19. Santer, M., & Pellegrino, S. (2011). Concept and design of a multistable plate structure. Journal of Mechanical Design, 133(8).

  20. Arrieta, A.F., Bilgen, O., Friswell, M.I., Hagedorn, P.: Passive load alleviation bi-stable morphing concept. AIP Adv. 2(3), 032118 (2012)

    Article  Google Scholar 

  21. Arrieta, A.F., Kuder, I.K., Rist, M., Waeber, T., Ermanni, P.: Passive load alleviation aerofoil concept with variable stiffness multi-stable composites. Compos. Struct. 116, 235–242 (2014)

    Article  Google Scholar 

  22. Arrieta, A. F., Cavens, W., & Chopra, A. (2019). Passive Load Alleviation in Wind Turbine Blades from Selectively Compliant Bi-stable Morphing Flaps. In AIAA Scitech 2019 Forum (p. 1856).

  23. Dai, F., Li, H., Du, S.: Design and analysis of a tri-stable structure based on bi-stable laminates. Compos. A Appl. Sci. Manuf. 43(9), 1497–1504 (2012)

    Article  Google Scholar 

  24. Dai, F., Li, H., Du, S.: A multi-stable wavy skin based on bi-stable laminates. Compos. A Appl. Sci. Manuf. 45, 102–108 (2013)

    Article  CAS  Google Scholar 

  25. Dai, F., Li, H., Du, S.: A multi-stable lattice structure and its snap-through behavior among multiple states. Compos. Struct. 97, 56–63 (2013)

    Article  Google Scholar 

  26. Sousa, C.S., Camanho, P.P., Suleman, A.: Analysis of multistable variable stiffness composite plates. Compos. Struct. 98, 34–46 (2013)

    Article  Google Scholar 

  27. Kuder, I.K., Arrieta, A.F., Raither, W.E., Ermanni, P.: Variable stiffness material and structural concepts for morphing applications. Prog. Aerosp. Sci. 63, 33–55 (2013)

    Article  Google Scholar 

  28. Arrieta, A.F., Kuder, I.K., Waeber, T., Ermanni, P.: Variable stiffness characteristics of embeddable multi-stable composites. Compos. Sci. Technol. 97, 12–18 (2014)

    Article  CAS  Google Scholar 

  29. Kuder, I.K., Arrieta, A.F., Ermanni, P.: Design space of embeddable variable stiffness bi-stable elements for morphing applications. Compos. Struct. 122, 445–455 (2015)

    Article  Google Scholar 

  30. Cui, Y., Santer, M.: Characterisation of tessellated bistable composite laminates. Compos. Struct. 137, 93–104 (2016)

    Article  Google Scholar 

  31. Mostafavi, S., Golzar, M., Alibeigloo, A.: On the thermally induced multistability of connected curved composite plates. Compos. Struct. 139, 210–219 (2016)

    Article  Google Scholar 

  32. Eckstein, E., Pirrera, A., & Weaver, P. M. (2016). Thermally driven morphing and snap-through behavior of hybrid laminate shells. AIAA Journal, 1778–1788.

  33. Betts, D.N., Bowen, C.R., Kim, H.A., Gathercole, N., Clarke, C.T., Inman, D.J.: Nonlinear dynamics of a bistable piezoelectric-composite energy harvester for broadband application. The European Physical Journal Special Topics 222(7), 1553–1562 (2013)

    Article  Google Scholar 

  34. Giddings, P.F., Kim, H.A., Salo, A.I., Bowen, C.R.: Modelling of piezoelectrically actuated bistable composites. Mater. Lett. 65(9), 1261–1263 (2011)

    Article  CAS  Google Scholar 

  35. Kim, H.A., Betts, D.N., Salo, A.I., Bowen, C.R.: Shape memory alloy-piezoelectric active structures for reversible actuation of bistable composites. AIAA J. 48(6), 1265–1268 (2010)

    Article  Google Scholar 

  36. Da Rocha-Schmidt, L., Datashvili, L. S., & Baier, H. (2016). A multistep morphing structures design approach applied to different types of applications in aerospace. In 24th AIAA/AHS Adaptive Structures Conference (p. 0817).

  37. Mattioni, F., Weaver, P.M., Potter, K.D., Friswell, M.I.: Analysis of thermally induced multistable composites. Int. J. Solids Struct. 45(2), 657–675 (2008)

    Article  Google Scholar 

  38. Mattioni, F., Weaver, P.M., Friswell, M.I.: Multistable composite plates with piecewise variation of lay-up in the planform. Int. J. Solids Struct. 46(1), 151–164 (2009)

    Article  Google Scholar 

  39. Cui, Y., Santer, M.: Highly multistable composite surfaces. Compos. Struct. 124, 44–54 (2015)

    Article  Google Scholar 

  40. Zhao, H., Fang, H., Santer, M. J., Lan, L., Hou, Y., Wu, K., & Jiang, H. (2018). The Selection and Optimization of the Reconfigurable Shaped Reflector Structure Material. In MATEC Web of Conferences (Vol. 175, p. 01024). EDP Sciences.

  41. Hiroaki, T., Sakamoto, H., Inagaki, A., Ishimura, K., Doi, A., Kono, Y., Kuratomi, T.: Development of a smart reconfigurable reflector prototype for an extremely high-frequency antenna. J. Intell. Mater. Syst. Struct. 27(6), 764–773 (2016)

    Article  CAS  Google Scholar 

  42. Birch, C.P., Oom, S.P., Beecham, J.A.: Rectangular and hexagonal grids used for observation, experiment and simulation in ecology. Ecol. Model. 206(3–4), 347–359 (2007)

    Article  Google Scholar 

  43. McKnight, G., & Henry, C. (2005, May). Variable stiffness materials for reconfigurable surface applications. In Smart Structures and Materials 2005: Active Materials: Behavior and Mechanics (Vol. 5761, pp. 119–126). International Society for Optics and Photonics.

  44. Mcknight, G., Doty, R., Keefe, A., Herrera, G., Henry, C.: Segmented reinforcement variable stiffness materials for reconfigurable surfaces. J. Intell. Mater. Syst. Struct. 21(17), 1783–1793 (2010)

    Article  Google Scholar 

Download references

Funding

Funding for this research is provided by Amirkabir University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Sadr.

Ethics declarations

Conflict of Interest

We have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fazli, M., Sadr, M.H. & Ghashochi-Bargh, H. Analysis of Bi-stable Hexagonal Composite Laminate Under Thermal Load. Appl Compos Mater 28, 1067–1087 (2021). https://doi.org/10.1007/s10443-021-09899-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-021-09899-7

Keywords

Navigation