Skip to main content

Advertisement

Log in

Thermotolerant wheat cultivar (Triticum aestivum L. var. WR544) response to ozone, EDU, and particulate matter interactive exposure

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The present study was conducted to assess the response of thermotolerant wheat cultivar (Triticum aestivum L. var. WR544) to individual and combination of ambient ground level ozone (AO3) and particulate matter (PM) air pollutants with ethylene diurea (EDU) used as an ozone stress mitigator. The four treatment combinations to which wheat cultivars were exposed are T1 (AO3 + PM), T2 (EDU + PM), T3 (AO3-PM), and T4 (EDU-PM). The effect of different treatments on morphological (foliar ozone injury, leaf area, shoot height, number of leaves, and total biomass), biochemical (leaf extract pH, electrical conductivity, relative water content, total chlorophyll, ascorbic acid content), nutritional (leaf carbohydrate content and leaf protein content), and yield (biological yield, economic yield, and harvest index) attributes of the cultivar were monitored. The plants under T1 experienced 20–30% foliar ozone injury and recorded lowest economic yield (0.58 g/plant). Plants under T2 and T3 showed visible foliar ozone injury range between 0 and 5% whereas plants under T4 exhibited negligible ozone injuries. EDU-treated plants without PM deposition (T4) exhibited better morphology, leaf protein content, leaf carbohydrate content, biological and economic yield as compared to T1-, T2-, and T3-treated plants but EDU was only partially effective. Despite being a thermotolerant variety, WR544 gets adversely affected by the individual and combined exposure of AO3 and PM air pollutants. These result findings highlighted the need for more detailed study of air quality impact on the thermotolerant cultivars of other key crops to individual and combined air pollutants.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

source: Zadoks growth stages of wheat)

Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data material

The authors declare that all data is provided in full in the results section of this paper.

References

  • Abebe, A. L., Pathak, H., & Singh, S. D. (2016). Growth and yield of wheat (Triticum aestivum L.) with elevated atmospheric carbon dioxide and temperature in north-west India. Current Advances in Agricultural Sciences (An International Journal), 8(1), 24–27.

    Article  Google Scholar 

  • Agathokleous, E., Koike, T., Watanabe, M., Hoshika, Y., & Saitanis, C. J. (2015). Ethylene-di-urea (EDU), an effective phytoproctectant against O3 deleterious effects and a valuable research tool. Journal of Agricultural Meteorology, 71(3), 185–195.

    Article  Google Scholar 

  • Aggarwal, P. K. (2008). Global climate change and Indian agriculture: impacts, adaptation and mitigation Indian. Journal of Agricultural Sciences, 78(11), 911.

    Google Scholar 

  • Agrawal, M., Singh, B., Rajput, M., Marshall, F., & Bell, J. N. B. (2003). Effect of air pollution on peri-urban agriculture: a case study. Environmental Pollution, 126(3), 323–329.

    Article  CAS  Google Scholar 

  • Ainsworth, E. A. (2017). Understanding and improving global crop response to ozone pollution. The Plant Journal, 90(5), 886–897.

    Article  CAS  Google Scholar 

  • Ainsworth, E. A., Yendrek, C. R., Sitch, S., Collins, W. J., & Emberson, L. D. (2012). The effects of tropospheric ozone on net primary productivity and implications for climate change. Annual Review of Plant Biology, 63, 637–661.

    Article  CAS  Google Scholar 

  • AirVisual, I. (2020). World Air Quality Report. 2018.

  • Anav, A., De Marco, A., Proietti, C., Alessandri, A., Dell’Aquila, A., Cionni, I., & Vitale, M. (2016). Comparing concentration-based (AOT40) and stomatal uptake (PODY) metrics for ozone risk assessment to European forests. Global Change Biology, 22(4), 1608–1627.

    Article  Google Scholar 

  • Ashmore, M. R. (2005). Assessing the future global impacts of ozone on vegetation. Plant, Cell & Environment, 28(8), 949–964.

    Article  CAS  Google Scholar 

  • Avnery, S., Mauzerall, D. L., Liu, J., & Horowitz, L. W. (2011). Global crop yield reductions due to surface ozone exposure: 1. Year 2000 crop production losses and economic damage. Atmospheric Environment, 45(13), 2284–2296.

    Article  CAS  Google Scholar 

  • Ayranci, R., & Bagci, S. A. (2020). Utilization of stress tolerant local genotypes in wheat breeding program in context to global climate change. Ekin Journal of Crop Breeding and Genetics, 6(1), 11–26.

    Google Scholar 

  • Balasubramaniam, K., Atukorala, T. M. S., Wijesundera, S., Hoover, A. A., & De Silva, M. A. T. (1973). Biochemical changes during germination of the coconut (Cocos nucifera). Annals of Botany, 37(3), 439–445.

    Article  Google Scholar 

  • Brauer, M., Amann, M., Burnett, R. T., Cohen, A., Dentener, F., Ezzati, M., & Thurston, G. D. (2012). Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution. Environmental Science & Technology, 46(2), 652–660.

    Article  CAS  Google Scholar 

  • Brunschön-Harti, S., Fangmeier, A., & Jäger, H. J. (1995). Effects of ethylenediurea and ozone on the antioxidative systems in beans (Phaseolus vulgaris L.). Environmental Pollution, 90(1), 95–103.

    Article  Google Scholar 

  • Carnahan, J. E., Jenner, E. L., & Wat, E. K. W. (1978). Prevention of ozone injury to plants by a new protectant chemical. Phytopathology, 68(122), 1229.

    Google Scholar 

  • Chakrabarti, B., Singh, R., Bhatia, A., Singh, S. D., & Singh, B. (2014). Impact of aerial deposition from thermal power plant on growth and yield of rice (Oryza sativa) and wheat (Triticum aestivum). Indian Journal of Agricultural Sciences, 84(5), 602–606.

    Google Scholar 

  • CPCB (2012) National Ambient Air Quality Monitoring; series: NAAQMS/ 35 /2011-2012. Central Pollution Control Board.

  • Dash, S. K., & Dash, A. K. (2018). Air pollution tolerance index to assess the pollution tolerance level of plant species in industrial areas. Asian Journal of Chemistry, 29(12), 219–222.

    Article  Google Scholar 

  • Delgado-Saborit, J. M., & Esteve-Cano, V. J. (2008). Assessment of tropospheric ozone effects on citrus crops using passive samplers in a western Mediterranean area. Agriculture, ecosystems & environment, 124(1-2), 147-153.

  • Escobedo, F. J., & Nowak, D. J. (2009). Spatial heterogeneity and air pollution removal by an urban forest. Landscape and Urban Planning, 90(3–4), 102–110.

    Article  Google Scholar 

  • Feng, Z., & Kobayashi, K. (2009). Assessing the impacts of current and future concentrations of surface ozone on crop yield with meta-analysis. Atmospheric Environment, 43(8), 1510–1519.

    Article  CAS  Google Scholar 

  • Feng, Z., Wang, L., Pleijel, H., Zhu, J., & Kobayashi, K. (2016). Differential effects of ozone on photosynthesis of winter wheat among cultivars depend on antioxidative enzymes rather than stomatal conductance. Science of the Total Environment, 572, 404–411.

    Article  CAS  Google Scholar 

  • Finlayson-Pitts, B. J., & Pitts, J. N., Jr. (1993). Atmospheric chemistry of tropospheric ozone formation: scientific and regulatory implications. Air & Waste, 43(8), 1091–1100.

    Article  CAS  Google Scholar 

  • Fuhrer, J. (2009). Ozone risk for crops and pastures in present and future climates. Naturwissenschaften, 96(2), 173–194.

    Article  CAS  Google Scholar 

  • Garg, N., & Manchanda, G. (2009). ROS generation in plants: boon or bane? Plant Biosystems, 143(1), 81–96.

    Article  Google Scholar 

  • Gelang, J., Pleijel, H., Sild, E., Danielsson, H., Younis, S., & Selldén, G. (2000). Rate and duration of grain filling in relation to flag leaf senescence and grain yield in spring wheat (Triticum aestivum) exposed to different concentrations of ozone. Physiologia Plantarum, 110(3), 366–375.

    Article  CAS  Google Scholar 

  • Ghosh, A., Pandey, A. K., Agrawal, M., & Agrawal, S. B. (2020). Assessment of growth, physiological, and yield attributes of wheat cultivar HD 2967 under elevated ozone exposure adopting timely and delayed sowing conditions. Environmental Science and Pollution Research, 27(14), 17205–17220.

    Article  CAS  Google Scholar 

  • Ghouse, A. K. M., Zaidi, H., & Attique, A. (1980). Effect of air pollution on the foliar organs of Callistemon citrinus Stapf. Journal of Scientific Research, 2, 207–209.

    Google Scholar 

  • Ghude, S. D., Jena, C., Chate, D. M., Beig, G., Pfister, G. G., Kumar, R., & Ramanathan, V. (2014). Reductions in India’s crop yield due to ozone. Geophysical Research Letters, 41(15), 5685–5691.

    Article  Google Scholar 

  • González-Fernández, I., Elvira, S., Calatayud, V., Calvo, E., Aparicio, P., Sánchez, M., & Bermejo, V. B. (2016). Ozone effects on the physiology and marketable biomass of leafy vegetables under Mediterranean conditions: spinach (Spinacia Oleracea L.) and Swiss chard (Beta Vulgaris L. Var. cycla). Agriculture, Ecosystems & Environment, 235, 215–228.

    Article  Google Scholar 

  • Gosselin, N., Sagan, V., Maimaitiyiming, M., Fishman, J., Belina, K., Podleski, A., & Dixon, A. (2020). Using visual ozone damage scores and spectroscopy to quantify soybean responses to background ozone. Remote Sensing, 12(1), 93.

    Article  Google Scholar 

  • Goyal, S. K., & Singh, J. P. (2002). Demand versus supply of foodgrains in India: Implications to food security (No. 1026–2016–82014).

  • Gupta, S. K., Sharma, M., Majumder, B., Maurya, V. K., Lohani, M., Deeba, F., & Pandey, V. (2018). Impact of Ethylene diurea (EDU) on growth, yield, and proteome of two winter wheat varieties under high ambient ozone phytotoxicity. Chemosphere, 196, 161–173.

    Article  CAS  Google Scholar 

  • Harrison, R. M., & Yin, J. (2000). Particulate matter in the atmosphere: which particle properties are important for its effects on health? Science of the Total Environment, 249(1–3), 85–101.

    Article  CAS  Google Scholar 

  • Heath, R. L. (1987). The biochemistry of ozone attack on the plasma membrane of plant cells. In Phytochemical effects of environmental compounds (pp. 29–54). Springer, Boston, MA.

  • Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of biochemistry and biophysics, 125(1), 189-198.

  • Hirano, T., Kiyota, M., Kitaya, Y., & Aiga, I. (1990). The physical effects of dust on photosynthetic rate of plant leaves. Journal of Agricultural Meteorology, 46(1), 1–7.

    Article  Google Scholar 

  • Hiscox, J. D., & Israelstam, G. F. (1979). A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany, 57(12), 1332–1334.

    Article  CAS  Google Scholar 

  • Igrejas, G., Ikeda, T. M., & Guzmán, C. (Eds.). (2020). Wheat Quality for Improving Processing and Human Health (p. 542). Springer.

  • Joshi, P. C., & Swami, A. (2009). Air pollution induced changes in the photosynthetic pigments of selected plant species. Journal of Environmental Biology, 30(2), 295–298.

    CAS  Google Scholar 

  • Kim, K. H., Jahan, S. A., & Kabir, E. (2013). A review on human health perspective of air pollution with respect to allergies and asthma. Environment International, 59, 41–52.

    Article  CAS  Google Scholar 

  • Koti, S., Reddy, K. R., Reddy, V. R., Kakani, V. G., & Zhao, D. (2005). Interactive effects of carbon dioxide, temperature, and ultraviolet-B radiation on soybean (Glycine max L.) flower and pollen morphology, pollen production, germination, and tube lengths. Journal of Experimental Botany, 56(412), 725–736.

    Article  CAS  Google Scholar 

  • Kumar, P., Joshi, P. K., & Birthal, P. S. (2009). Demand projections for foodgrains in India. Agricultural Economics Research Review, 22(347-2016-16842), 237-244.

  • Kumar, S. N., Aggarwal, P. K., Rani, D. S., Saxena, R., Chauhan, N., & Jain, S. (2014). Vulnerability of wheat production to climate change in India. Climate Research, 59(3), 173–187.

    Article  Google Scholar 

  • Kumari, S., Kumar, S., Prakash, P., & Singh, A. K. (2018). Effect of individual and combined drought and high temperature stress condition on chlorophyll contents and growth of wheat (Triticum aestivum L.) seedlings. J Pharmacogn Phytochem, 7, 2369–2374.

    CAS  Google Scholar 

  • Krupa, S. V., Nosal, M., & Legge, A. H. (1994). Ambient ozone and crop loss: establishing a cause-effect relationship. Environmental Pollution, 83(3), 269-276.

  • Largeron, Y., & Staquet, C. (2016). Persistent inversion dynamics and wintertime PM10 air pollution in Alpine valleys. Atmospheric Environment, 135, 92–108.

    Article  CAS  Google Scholar 

  • Lowry, O. H., Rosenberg, N. J., Farr, A. L., & Randall, R. J. (1951). Estimation of protein by Lowry’s method. Journal of Biological Chemistry, 193, 265.

    Article  CAS  Google Scholar 

  • Mall, R. K., Gupta, A., & Sonkar, G. (2017). Effect of climate change on agricultural crops. In Current developments in biotechnology and bioengineering (pp. 23–46). Elsevier.

  • Mills, G., Buse, A., Gimeno, B., Bermejo, V., Holland, M., Emberson, L., & Pleijel, H. (2007). A synthesis of AOT40-based response functions and critical levels of ozone for agricultural and horticultural crops. Atmospheric Environment, 41(12), 2630–2643.

    Article  CAS  Google Scholar 

  • Mina, U., Sigh, R., & Chakrabarti, B. (2013). Agricultural production and air quality: an emerging challenge. International Journal of Environmental Science: Development and Monitoring, 4(2), 80–85.

    Google Scholar 

  • Mittal, P., Aggarwal, T., & Gupta, M. K. (2019). Impact of Smog in North India-Air Pollution. Advanced Science, Engineering and Medicine, 11(1–2), 114–118.

    Article  CAS  Google Scholar 

  • Monks, P. S., Archibald, A. T., Colette, A., Cooper, O., Coyle, M., Derwent, R., & Williams, M. L. (2015). Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmospheric Chemistry and Physics, 15(15), 8889–8973.

    Article  CAS  Google Scholar 

  • Moradi, A., Abkenar, K. T., Mohammadian, M. A., & Shabanian, N. (2017). Effects of dust on forest tree health in Zagros oak forests. Environmental Monitoring and Assessment, 189(11), 1–11.

    Article  CAS  Google Scholar 

  • Morgan, P. B., Ainsworth, E. A., & Long, S. P. (2003). How does elevated ozone impact soybean? A meta-analysis of photosynthesis, growth and yield. Plant, Cell & Environment, 26(8), 1317–1328.

    Article  CAS  Google Scholar 

  • Muthusamy, S. K., Dalal, M., Chinnusamy, V., & Bansal, K. C. (2016). Differential regulation of genes coding for organelle and cytosolic ClpATPases under biotic and abiotic stresses in wheat. Frontiers in Plant Science, 7, 929.

    Article  Google Scholar 

  • Ninave, S. Y., Chaudhari, P. R., Gajghate, D. G., & Tarar, J. L. (2001). Foliar biochemical features of plants as indicators of air pollution. Bulletin of Environmental Contamination and Toxicology, 67(1), 133–140.

    Article  CAS  Google Scholar 

  • Ortiz, R., Sayre, K. D., Govaerts, B., Gupta, R., Subbarao, G. V., Ban, T., & Reynolds, M. (2008). Climate change: can wheat beat the heat? Agriculture, Ecosystems & Environment, 126(1–2), 46–58.

    Article  Google Scholar 

  • Pandey, A. K., Ghosh, A., Agrawal, M., & Agrawal, S. B. (2018). Effect of elevated ozone and varying levels of soil nitrogen in two wheat (Triticum aestivum L.) cultivars: Growth, gas-exchange, antioxidant status, grain yield and quality. Ecotoxicology and Environmental Safety, 158, 59–68.

    Article  CAS  Google Scholar 

  • Paoletti, E., Contran, N., Manning, W. J., & Ferrara, A. M. (2009). Use of the antiozonant ethylenediurea (EDU) in Italy: Verification of the effects of ambient ozone on crop plants and trees and investigation of EDU’s mode of action. Environmental Pollution, 157(5), 1453–1460.

    Article  CAS  Google Scholar 

  • Pell, E. J., Eckardt, N. A., & Glick, R. E. (1994). Biochemical and molecular basis for impairment of photosynthetic potential. Photosynthesis Research, 39(3), 453–462.

    Article  CAS  Google Scholar 

  • Pleijel, H., Danielsson, H., Gelang, J., Sild, E., & Selldén, G. (1998). Growth stage dependence of the grain yield response to ozone in spring wheat (Triticum aestivum L.). Agriculture, ecosystems & environment, 70(1), 61-68.

  • Polle, A. (2001). Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis. Plant Physiology, 126(1), 445–462.

    Article  CAS  Google Scholar 

  • Prasad, M. S. V., & Inamdar, J. A. (1990). Effect of cement kiln dust pollution on black gram (Vigna mungo (L.) Hepper). Proceedings: Plant Sciences, 100(6), 435–443.

    Google Scholar 

  • Rai, P. K. (2016). Impacts of particulate matter pollution on plants: Implications for environmental biomonitoring. Ecotoxicology and Environmental Safety, 129, 120–136.

    Article  CAS  Google Scholar 

  • Rajagopal, V., Balasubramanian, V., & Sinha, S. K. (1977). Diurnal fluctuations in relative water content, nitrate reductase and proline content in water-stressed and non-stressed wheat. Physiologia Plantarum, 40(1), 69–71.

    Article  CAS  Google Scholar 

  • Regner-Joosten, K., Manderscheid, R., Bergmann, E., Bahadir, M., & Weigel, H. J. (1994). An HPLC method to study the uptake and partitioning of the antiozonant EDU in bean plants. Angewandte Botanik, 68(5–6), 151–155.

    CAS  Google Scholar 

  • Saitanis, C. J., Bari, S. M., Burkey, K. O., Stamatelopoulos, D., & Agathokleous, E. (2014). Screening of Bangladeshi winter wheat (Triticum aestivum L.) cultivars for sensitivity to ozone. Environmental Science and Pollution Research, 21(23), 13560–13571.

    Article  CAS  Google Scholar 

  • Saxena, P., Sonwani, S., & Kulshrestha, U. C. (2017). Impact of Tropospheric Ozone and Particulate Matter on Plant Health (pp. 19–60). Sustaining future food security. Nova Publisher.

    Google Scholar 

  • Sild, E., Pleijel, H., & Sellden, G. (2002). Elevated ozone (O3) alters carbohydrate metabolism during grain filling in wheat (Triticum aestivum L.). Agriculture, Ecosystems & Environment, 92(1), 71–81.

    Article  CAS  Google Scholar 

  • Singh, A. A., Fatima, A., Mishra, A. K., Chaudhary, N., Mukherjee, A., Agrawal, M., & Agrawal, S. B. (2018). Assessment of ozone toxicity among 14 Indian wheat cultivars under field conditions: growth and productivity. Environmental Monitoring and Assessment, 190(4), 1–14.

    Article  Google Scholar 

  • Singh, H. V., Kumar, S. N., Ramawat, N., & Harit, R. C. (2017). Response of wheat varieties to heat stress under elevated temperature environments. Journal of Agrometeorology, 19(1), 17.

    Article  Google Scholar 

  • Singh, S. K., & Rao, D. N. (1983). Evaluation of the plants for their tolerance to air pollution Proceedings symposium on Air Pollution control held at IIT.

  • Singh, S. K., Rao, D. N., Agrawal, M., Pandey, J., & Naryan, D. (1991). Air pollution tolerance index of plants. Journal of Environmental Management, 32(1), 45–55.

    Article  Google Scholar 

  • Skelly, J. M., Innes, J. L., Savage, J. E., Snyder, K. R., Vanderheyden, D., Zhang, J., & Sanz, M. J. (1999). Observation and confirmation of foliar ozone symptoms of native plant species of Switzerland and southern Spain. Water, Air, and Soil Pollution, 116(1), 227–234.

    Article  CAS  Google Scholar 

  • Song, Y., Maher, B. A., Li, F., Wang, X., Sun, X., & Zhang, H. (2015). Particulate matter deposited on leaf of five evergreen species in Beijing, China: Source identification and size distribution. Atmospheric Environment, 105, 53–60.

    Article  CAS  Google Scholar 

  • Steubing, L., & Fangmeier, A. (1987). SO2-sensitivity of plant communities in a beech forest. Environmental Pollution, 44(4), 297–306.

    Article  CAS  Google Scholar 

  • Temple, P. J., & Bisessar, S. (1979). Response of white bean to bacterial blight, ozone, and antioxidant protection in the field. Phytopathology, 69, 101–103.

    Article  CAS  Google Scholar 

  • Thorsheim, P. (2006). Inventing pollution: coal, smoke, and culture in Britain since 1800. Ohio: University Press.

    Book  Google Scholar 

  • Toivone, P. M. A., Hofstra, G., & Wukasch, R. T. (1982). Assessment of yield losses in white bean due to ozone using the antioxidant EDU. Canadian Journal of Plant Pathology, 4(4), 381–386.

    Article  Google Scholar 

  • Varshney, C. K., & Rout, C. (1998). Ethylene diurea (EDU) protection against ozone injury in tomato plants at Delhi. Bulletin of Environmental Contamination and Toxicology, 61(2), 188–193.

    Article  CAS  Google Scholar 

  • Yadav, D. S., Mishra, A. K., Rai, R., Chaudhary, N., Mukherjee, A., Agrawal, S. B., & Agrawal, M. (2020). Responses of an old and a modern Indian wheat cultivar to future O3 level: Physiological, yield and grain quality parameters. Environmental Pollution, 259, 113939.

    Article  CAS  Google Scholar 

  • Yemm, E. W., & Willis, A. (1954). The estimation of carbohydrates in plant extracts by anthrone. Biochemical Journal, 57(3), 508–514.

    Article  CAS  Google Scholar 

  • Zheng, Y. H., Li, X., Li, Y. G., Miao, B. H., Xu, H., Simmons, M., & Yang, X. H. (2012). Contrasting responses of salinity-stressed salt-tolerant and intolerant winter wheat (Triticum aestivum L.) cultivars to ozone pollution. Plant Physiology and Biochemistry, 52, 169–178.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the funds received by University Grants Commission (UGC) under UPOE-II grant for the support of experimental work of Agroecology Lab, School of Environmental Sciences, JNU, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Usha Mina.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mina, U., Smiti, K. & Yadav, P. Thermotolerant wheat cultivar (Triticum aestivum L. var. WR544) response to ozone, EDU, and particulate matter interactive exposure. Environ Monit Assess 193, 318 (2021). https://doi.org/10.1007/s10661-021-09079-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09079-x

Keywords

Navigation