Skip to main content

Advertisement

Log in

Warming Stimulates Iron-Mediated Carbon and Nutrient Cycling in Mineral-Poor Peatlands

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Iron (Fe) plays a key role in elemental cycling at terrestrial–aquatic interfaces by stabilizing carbon (C), phosphorus (P), and nutrient cations through physicochemical associations and by potentially releasing these elements following the reduction of Fe(III) to Fe(II). However, the ecosystem-scale importance of Fe redox cycling and its responses to climate change remain unclear in precipitation-fed peatlands (bogs), C-rich wetlands with very low mineral content. We tested impacts of Fe redox cycling on C and nutrient release in two bogs in northern Minnesota and in Spruce and Peatland Responses Under Changing Environments (SPRUCE), an ecosystem-scale warming experiment. Concentrations of Fe(III) declined from the peat surface to 50 cm depth (31 to 0.5 µmol g−1) and co-occurred with Fe(II) (10 to 30 µmol g−1). Chemical reduction of Fe(III) released C and P from variably saturated (0–30 cm) peat (106–1006 µmol C g−1; 0.6–5 µmol P g−1), and Fe-bound C was similar to previous measurements from upland mineral soils. Concentrations of Fe(II) and dissolved organic carbon (DOC) were strongly (R2 = 0.56–0.78) and positively correlated in water samples measured at SPRUCE enclosure outlets and ambient near-surface porewater. Concentrations of Fe(II) also correlated positively with P at warmer SPRUCE temperature treatments and increased with experimental warming, but stabilized at the highest temperature treatments as water depth declined. Although bogs have low total mineral content, mass balance measurements indicated that atmospheric deposition could in principle sustain significant Fe cycling and hydrologic losses in these ecosystems. Overall, Fe redox cycling significantly impacted C and nutrient dynamics in these mineral-poor bogs, contributing to strong correlations between Fe(II) and DOC in water samples. Increased Fe(III) reduction with warmer temperatures will likely promote peatland C and nutrient release, impacting ecosystem C budgets both directly and indirectly by enhancing decomposition and productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Björnerås C, Weyhenmeyer GA, Evans CD, Gessner MO, Grossart H-P, Kangur K, Kokorite I, Kortelainen P, Laudon H, Lehtoranta J, Lottig N, Monteith DT, Nõges P, Nõges T, Oulehle F, Riise G, Rusak JA, Räike A, Sire J, Sterling S, Kritzberg ES. 2017. Widespread increases in iron concentration in European and North American freshwaters. Glob Biogeochem Cycles 31:1488–1500.

    Google Scholar 

  • Blazevic A, Orlowska E, Kandioller W, Jirsa F, Keppler BK, Tafili-Kryeziu M, Linert W, Krachler RF, Krachler R, Rompel A. 2016. Photoreduction of terrigenous Fe-humic substances leads to bioavailable iron in oceans. Angew Chem 128:6527–6532.

    PubMed  Google Scholar 

  • Blodau C, Roehm CL, Moore TR. 2002. Iron, sulfur, and dissolved carbon dynamics in a northern peatland. Arch Hydrobiol 154(4):561–583.

    CAS  Google Scholar 

  • Bridgham SD, Pastor J, Janssens JA, Chapin C, Malterer TJ. 1996. Multiple limiting gradients in peatlands: a call for a new paradigm. Wetlands 16:45–65.

    Google Scholar 

  • Chacon N, Silver WL, Dubinsky EA, Cusack DF. 2006. Iron reduction and soil phosphorus solubilization in humid tropical forests soils: the roles of labile carbon pools and an electron shuttle compound. Biogeochemistry 78:67–84.

    CAS  Google Scholar 

  • Chen J, Gu B, Royer RA, Burgos WD. 2003. The roles of natural organic matter in chemical and microbial reduction of ferric iron. Sci Total Environ 307:167–178.

    CAS  PubMed  Google Scholar 

  • Chen C, Meile C, Wilmoth J, Barcellos D, Thompson A. 2018. Influence of pO2 on iron redox cycling and anaerobic organic carbon mineralization in a humid tropical forest soil. Environ Sci Technol 52:7709–7719.

    CAS  PubMed  Google Scholar 

  • Chen C, Hall SJ, Coward E, Thompson A. 2020. Iron-mediated organic matter decomposition in humid soils can counteract protection. Nat Commun 11:1–13.

    Google Scholar 

  • Chin Y-P, Traina SJ, Swank CR, Backhus D. 1998. Abundance and properties of dissolved organic matter in pore waters of a freshwater wetland. Limnol Oceanogr 43:1287–1296.

    CAS  Google Scholar 

  • Curtinrich HJ, Hall SJ, Sebestyen SD. 2021. Marcell Experimental Forest peat core extraction chemical analysis data (DOC, Fe, Ca, Mg, K, P, Al) ver 1. Environmental Data Initiative. https://doi.org/10.6073/pasta/8c2c908fec929b5fd812851ef9150301

    Article  Google Scholar 

  • Daugherty EE, Gilbert B, Nico PS, Borch T. 2017. Complexation and redox buffering of iron(II) by dissolved organic matter. Environ Sci Technol 51:11096–11104.

    CAS  PubMed  Google Scholar 

  • Dinsmore KJ, Billett MF, Skiba UM, Rees RM, Drewer J, Helfter C. 2010. Role of the aquatic pathway in the carbon and greenhouse gas budgets of a peatland catchment. Glob Change Biol 16:2750–2762.

    Google Scholar 

  • Eisenreich SJ, Hollod GJ, Langevin S. 1978. Precipitation chemistry and atmospheric deposition of trace elements in Northeastern Minnesota. Minneapolis, MN: Environmental Engineering Program, Dept. of Civil and Mineral Engineering, University of Minnesota.

  • Ekström SM, Regnell O, Reader HE, Nilsson PA, Löfgren S, Kritzberg ES. 2016. Increasing concentrations of iron in surface waters as a consequence of reducing conditions in the catchment area. J Geophys Res Biogeosci 121:479–493.

    Google Scholar 

  • Freeman C, Evans CD, Monteith DT, Reynolds B, Fenner N. 2001. Export of organic carbon from peat soils. Nature 412:785–785.

    CAS  PubMed  Google Scholar 

  • Gaffney JW, White KN, Boult S. 2008. Oxidation state and size of Fe controlled by organic matter in natural waters. Environ Sci Technol 42:3575–3581.

    CAS  PubMed  Google Scholar 

  • Griffiths NA, Sebestyen SD. 2016. Dynamic vertical profiles of peat porewater chemistry in a northern peatland. Wetlands 36:1119–1130.

    Google Scholar 

  • Griffiths NA, Hanson PJ, Ricciuto DM, Iversen CM, Jensen AM, Malhotra A, McFarlane KJ, Norby RJ, Sargsyan K, Sebestyen SD, Shi X, Walker AP, Ward EJ, Warren JM, Weston DJ. 2017. Temporal and spatial variation in peatland carbon cycling and implications for interpreting responses of an ecosystem-scale warming experiment. Soil Sci Soc Am J 81:1668–1688.

    CAS  Google Scholar 

  • Griffiths NA, Sebestyen SD, Oleheiser KC. 2019. Variation in peatland porewater chemistry over time and space along a bog to fen gradient. Sci Total Environ 697:134152.

    CAS  PubMed  Google Scholar 

  • Grybos M, Davranche M, Gruau G, Petitjean P, Pédrot M. 2009. Increasing pH drives organic matter solubilization from wetland soils under reducing conditions. Geoderma 154:13–19.

    CAS  Google Scholar 

  • Hagedorn F, Kaiser K, Feyen H, Schleppi P. 2000. Effects of redox conditions and flow processes on the mobility of dissolved organic carbon and nitrogen in a forest soil. J Environ Qual 29:288–297.

    CAS  Google Scholar 

  • Hall SJ, Huang W. 2017. Iron reduction: a mechanism for dynamic cycling of occluded cations in tropical forest soils? Biogeochemistry 136:91–102.

    CAS  Google Scholar 

  • Hall SJ, Treffkorn J, Silver WL. 2014. Breaking the enzymatic latch: impacts of reducing conditions on hydrolytic enzyme activity in tropical forest soils. Ecology 95:2964–2973.

    Google Scholar 

  • Hanson P, Riggs J, Nettles W, Krassovski M, Hook L. 2016. SPRUCE whole ecosystems warming (WEW) environmental data beginning August 2015. Oak Ridge, TN: Oak Ridge Natl Lab, TES SFA, US Dept Energy. https://doi.org/10.3334/CDIAC/spruce.032

  • Hanson PJ, Riggs JS, Nettles WR, Phillips JR, Krassovski MB, Hook LA, Gu L, Richardson AD, Aubrecht DM, Ricciuto DM, Warren JM, Barbier C. 2017. Attaining whole-ecosystem warming using air and deep-soil heating methods with an elevated CO2 atmosphere. Biogeosciences 14:861–883.

    CAS  Google Scholar 

  • Hanson PJ, Griffiths NA, Iversen CM, Norby RJ, Sebestyen SD, Phillips JR, Chanton JP, Kolka RK, Malhotra A, Oleheiser KC, Warren JM, Shi X, Yang X, Mao J, Ricciuto DM. 2020a. Rapid net carbon loss from a whole-ecosystem warmed peatland. AGU Adv 1:e2020AV000163.

    Google Scholar 

  • Hanson PJ, Phillips JR, Nettles WR, Pearson KJ, Hook LA. 2020b. SPRUCE plot-level water table data assessments for absolute elevations and height with respect to mean hollows beginning in 2015. Oak Ridge, TN: Oak Ridge Natl Lab, TES SFA, US Dept Energy. https://doi.org/10.25581/spruce.079/1608615.

    Book  Google Scholar 

  • Herndon EM, Kinsman-Costello L, Duroe KA, Mills J, Kane ES, Sebestyen SD, Thompson AA, Wullschleger SD. 2019. Iron (oxyhydr)oxides serve as phosphate traps in tundra and boreal peat soils. J Geophys Res Biogeosci 124:227–246.

    CAS  Google Scholar 

  • Hill BH, Elonen CM, Jicha TM, Kolka RK, Lehto LLP, Sebestyen SD, Seifert-Monson LR. 2014. Ecoenzymatic stoichiometry and microbial processing of organic matter in northern bogs and fens reveals a common P-limitation between peatland types. Biogeochemistry 120:203–224.

    CAS  Google Scholar 

  • Hopple AM, Wilson RM, Kolton M, Zalman CA, Chanton JP, Kostka J, Hanson PJ, Keller JK, Bridgham SD. 2020. Massive peatland carbon banks vulnerable to rising temperatures. Nat Commun 11:2373.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang W, Hall SJ. 2017b. Optimized high-throughput methods for quantifying iron biogeochemical dynamics in soil. Geoderma 306:67–72.

    CAS  Google Scholar 

  • Huang W, Hall SJ. 2017a. Elevated moisture stimulates carbon loss from mineral soils by releasing protected organic matter. Nat Commun 8:1774.

    PubMed  PubMed Central  Google Scholar 

  • Iversen C, Hanson P, Brice D, Phillips J, McFarlane K, Hobbie E, Kolka R. 2014. SPRUCE peat physical and chemical characteristics from experimental plot cores, 2012. Oak Ridge, TN: Oak Ridge Natl Lab, TES SFA, US Dept Energy. https://doi.org/10.3334/CDIAC/spruce.005

  • Keller JK, Bridgham SD. 2007. Pathways of anaerobic carbon cycling across an ombrotrophic-minerotrophic peatland gradient. Limnol Oceanogr 52:96–107.

    CAS  Google Scholar 

  • Keller JK, Takagi KK. 2013. Solid-phase organic matter reduction regulates anaerobic decomposition in bog soil. Ecosphere 4:art54.

    Google Scholar 

  • Kleber M, Eusterhues K, Keiluweit M, Mikutta C, Mikutta R, Nico PS. 2015. Mineral–organic associations: formation, properties, and relevance in soil environments. Adv Agron 130:1–140.

    Google Scholar 

  • Knorr K-H. 2013. DOC-dynamics in a small headwater catchment as driven by redox fluctuations and hydrological flow paths—are DOC exports mediated by iron reduction/oxidation cycles? Biogeosciences 10:891–904.

    Google Scholar 

  • Koehler A-K, Sottocornola M, Kiely G. 2011. How strong is the current carbon sequestration of an Atlantic blanket bog? Glob Change Biol 17:309–319.

    Google Scholar 

  • Kolka RK, Sebestyen SD, Verry ES, Brooks KN, Eds. 2011. Peatland biogeochemistry and watershed hydrology at the Marcell Experimental Forest. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Küsel K, Blöthe M, Schulz D, Reiche M, Drake HL. 2008. Microbial reduction of iron and porewater biogeochemistry in acidic peatlands. Biogeosciences 5:1537–1549.

    Google Scholar 

  • Lovley DR, Phillips EJP. 1987. Rapid assay for microbially reducible ferric iron in aquatic sediments. Appl Environ Microbiol 53:1536–1540.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McKnight DM, Bencala KE. 1990. The chemistry of iron, aluminum, and dissolved organic material in three acidic, metal-enriched, mountain streams, as controlled by watershed and in-stream processes. Water Resour Res 26:3087–3100.

    CAS  Google Scholar 

  • Meier J, Costa R, Smalla K, Boehrer B, Wendt-Potthoff K. 2005. Temperature dependence of Fe(III) and sulfate reduction rates and its effect on growth and composition of bacterial enrichments from an acidic pit lake neutralization experiment. Geobiology 3:261–274.

    CAS  Google Scholar 

  • Neal C, Lofts S, Evans CD, Reynolds B, Tipping E, Neal M. 2008. Increasing iron concentrations in UK upland waters. Aquat Geochem 14:263–288.

    CAS  Google Scholar 

  • Nilsson M, Sagerfors J, Buffam I, Laudon H, Eriksson T, Grelle A, Klemedtsson L, Weslien P, Lindroth A. 2008. Contemporary carbon accumulation in a boreal oligotrophic minerogenic mire—a significant sink after accounting for all C-fluxes. Glob Change Biol 14:2317–2332.

    Google Scholar 

  • Oni SK, Futter MN, Bishop K, Köhler SJ, Ottosson-Löfvenius M, Laudon H. 2013. Long-term patterns in dissolved organic carbon, major elements and trace metals in boreal headwater catchments: trends, mechanisms and heterogeneity. Biogeosciences 10:2315–2330.

    CAS  Google Scholar 

  • Pan W, Kan J, Inamdar S, Chen C, Sparks D. 2016. Dissimilatory microbial iron reduction release DOC (dissolved organic carbon) from carbon-ferrihydrite association. Soil Biol Biochem 103:232–240.

    CAS  Google Scholar 

  • Phillips JR, Brice DJ, Hanson PJ, Childs J, Iversen CM, Norby RJ, Warren JM. 2017. SPRUCE pretreatment plant tissue analyses, 2009 through 2013. Oak Ridge, TN: Oak Ridge Natl Lab, TES SFA, US Dept Energy. https://doi.org/10.3334/CDIAC/spruce.038

  • Riedel T, Zak D, Biester H, Dittmar T. 2013. Iron traps terrestrially derived dissolved organic matter at redox interfaces. Proc Natl Acad Sci 110:10101–10105.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Riedel T, Iden S, Geilich J, Wiedner K, Durner W, Biester H. 2014. Changes in the molecular composition of organic matter leached from an agricultural topsoil following addition of biomass-derived black carbon (biochar). Org Geochem 69:52–60.

    CAS  Google Scholar 

  • Roulet NT, Lafleur PM, Richard PJH, Moore TR, Humphreys ER, Bubier J. 2007. Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Glob Change Biol 13:397–411.

    Google Scholar 

  • Schilling K, Borch T, Rhoades CC, Pallud CE. 2019. Temperature sensitivity of microbial Fe(III) reduction kinetics in subalpine wetland soils. Biogeochemistry 142:19–35.

    CAS  Google Scholar 

  • Sebestyen SD, Griffiths NA. 2016. SPRUCE enclosure corral and sump system: description, operation, and calibration. Oak Ridge, TN: Clim Change Sci Inst Oak Ridge Natl Lab US Dept Energy. https://doi.org/10.3334/CDIAC/spruce.030

  • Sebestyen SD, Verry ES, Brooks KN. 2011b. Hydrological responses to changes in forest cover on uplands and peatlands. In: Kolka RK, Sebesteyen SD, Verry ES, Brooks KN, Eds. Peatland biogeochemistry and watershed hydrology at the Marcell Experimental Forest, . Boca Raton, FL: CRC Press. pp 401–432.

    Google Scholar 

  • Sebestyen SD, Dorrance C, Olson D, Verry ES, Kolka RK, Elling AE, Kyllander R. 2011a. Long-term monitoring sites and trends at the Marcell Experimental Forest. In: Kolka RK, Sebestyen SD, Verry ES, Brooks K, Eds. Peatland biogeochemistry and watershed hydrology at the Marcell Experimental Forest, . Boca Raton, FL: CRC Press. pp 15–71.

    Google Scholar 

  • Sebestyen SD, Funke MM, Cotner JB, Larson JT, Aspelin NA. 2020a. Water chemistry data for studies of the biodegradability of dissolved organic matter in peatland catchments at the Marcell Experimental Forest: 2009–2011. Fort Collins CO: Forest Service Research Data Archive. Updated 16 May 2020. https://doi.org/10.2737/RDS-2017-0067

  • Sebestyen SD, Oleheiser KC, Larson JT, Aspelin NA, Stelling JM, Griffiths NA, Lany NK. 2020b. Marcell Experimental Forest event based precipitation chemistry, 2008—ongoing. https://portal.edirepository.org/nis/mapbrowse?packageid=edi.609.1. Last accessed 05/03/2021

  • Sebestyen SD, Verry ES, Elling AE, Kyllander RL, Roman DT, Burdick JM, Lany NK, Kolka RK. 2020c. Marcell Experimental Forest daily precipitation, 1961—ongoing. https://portal.edirepository.org/nis/mapbrowse?packageid=edi.563.1. Last accessed 05/03/2021

  • Sebestyen SD, Funke M, Cotner JB. 2021a. Sources and biodegradability of dissolved organic matter in two headwater peatland catchments at the Marcell Experimental Forest, northern Minnesota, USA. Hydrol Process 35:e14049.

    CAS  Google Scholar 

  • Sebestyen SD, Lany NK, Roman DT, Burdick JM, Kyllander RL, Verry ES, Kolka RK. 2021b. Hydrological and meteorological data from research catchments at the Marcell Experimental Forest. Hydrol Process. https://doi.org/10.1002/hyp.14092. In Press.

    Article  Google Scholar 

  • Sebestyen SD, Lany NK, Larson JT, Aspelin NA, Oleheiser KC, Nelson DK, Hall SJ, Curtinrich HJ. 2021c. Marcell Experimental Forest porewater chemistry at the S2 catchment, 2009—ongoing ver 2. Environmental Data Initiative. https://doi.org/10.6073/pasta/d7d5a29015ede8f226166064bc41cb87.

    Article  Google Scholar 

  • Sebestyen SD, Griffiths NA, Oleheiser KC, Stelling JM, Pierce CE, Nater EA, Wilson RM, Chanton JP, Hall SJ, Curtinrich HJ, Toner BM, Kolka RK. 2021d. SPRUCE outflow chemistry data for experimental plots beginning in 2016. Oak Ridge National Laboratory, TES SFA, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A. https://doi.org/10.25581/spruce.088/1775142.

    Google Scholar 

  • Senesi N, Griffith SM, Schnitzer M, Townsend MG. 1977. Binding of Fe3+ by humic materials. Geochim Cosmochim Acta 41:969–976.

    CAS  Google Scholar 

  • Shi X, Thornton PE, Ricciuto DM, Hanson PJ, Mao J, Sebestyen SD, Griffiths NA, Bisht G. 2015. Representing northern peatland microtopography and hydrology within the Community Land Model. Biogeosciences 12:6463–6477.

    Google Scholar 

  • Tfaily MM, Wilson RM, Cooper WT, Kostka JE, Hanson P, Chanton JP. 2018. Vertical stratification of peat pore water dissolved organic matter composition in a peat bog in Northern Minnesota. J Geophys Res Biogeosci 123:479–494.

    CAS  Google Scholar 

  • Theis TL, Singer PC. 1974. Complexation of iron(II) by organic matter and its effect on iron(II) oxygenation. Environ Sci Technol 8:569–573.

    CAS  Google Scholar 

  • Thompson A, Chadwick OA, Boman S, Chorover J. 2006. Colloid mobilization during soil iron redox oscillations. Environ Sci Technol 40:5743–5749.

    CAS  PubMed  Google Scholar 

  • Urban NR, Eisenreich SJ, Gorham E. 1987. Aluminum, iron, zinc, and lead in bog waters of northeastern North America. Can J Fish Aquat Sci 44:1165–1172.

    CAS  Google Scholar 

  • Urban N, Verry ES, Eisenreich S, Grigal D, Sebestyen S. 2011. Element cycling in upland/peatland watersheds. In: Kolka RK, Sebestyen SD, Verry ES, Brooks KN, Eds. Peatland biogeochemistry and watershed hydrology at the Marcell Experimental Forest, . Boca Raton, FL: CRC Press. pp 213–241.

    Google Scholar 

  • Verry ES. 1975. Streamflow chemistry and nutrient yields from upland-peatland watersheds in Minnesota. Ecology 56:1149–1157.

    CAS  Google Scholar 

  • Verry ES, Janssens J. 2011. Geology, vegetation, and hydrology of the S2 bog at the MEF: 12,000 years in Northern Minnesota. In: Kolka RK, Sebesteyen SD, Verry ES, Brooks KN, Eds. Peatland biogeochemistry and watershed hydrology at the Marcell Experimental Forest, . Boca Raton, FL: CRC Press. pp 93–134.

    Google Scholar 

  • Verry ES, Brooks KN, Nichols DS, Ferris DR, Sebestyen SD. 2011. Watershed hydrology. In: Kolka RK, Sebestyen SD, Verry ES, Brooks KN, Eds. Peatland biogeochemistry and watershed hydrology at the Marcell Experimental Forest, . Boca Raton, FL: CRC Press. pp 193–212.

    Google Scholar 

  • von der Heyden BP, Hauser EJ, Mishra B, Martinez GA, Bowie AR, Tyliszczak T, Mtshali TN, Roychoudhury AN, Myneni SCB. 2014. Ubiquitous presence of Fe(II) in aquatic colloids and its association with organic carbon. Environ Sci Technol Lett 1:387–392.

    Google Scholar 

  • Wagai R, Mayer LM. 2007. Sorptive stabilization of organic matter in soils by hydrous iron oxides. Geochim Cosmochim Acta 71:25–35.

    CAS  Google Scholar 

  • Weyhenmeyer GA, Prairie YT, Tranvik LJ. 2014. Browning of boreal freshwaters coupled to carbon-iron interactions along the aquatic continuum. Iwata T, editor. PLoS ONE 9:e88104.

  • Wood S. 2006. Generalized additive models: an introduction with R/Simon N. Wood. Boca Raton, FL: Chapman & Hall/CRC.

    Google Scholar 

  • Yao H, Conrad R. 2000. Effect of temperature on reduction of iron and production of carbon dioxide and methane in anoxic wetland rice soils. Biol Fertil Soils 32:135–141.

    CAS  Google Scholar 

  • Zhao Q, Poulson SR, Obrist D, Sumaila S, Dynes JJ, McBeth JM, Yang Y. 2016. Iron-bound organic carbon in forest soils: quantification and characterization. Biogeosciences 13:4777–4788.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank two anonymous reviewers and Keith Oleheiser, Anne Gapinski, Anthony Mirabito, and Toni Sleugh for assistance. This paper leverages several publicly available datasets cited in the text. This research was supported in part by startup funds to SJH from Iowa State University. NAG was supported by the U.S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research. Oak Ridge National Laboratory (ORNL) is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. The U.S. DOE SPRUCE was constructed and is operated by ORNL. SPRUCE research is a collaborative effort between ORNL and the USDA Forest Service. The participation of SDS in SPRUCE efforts, monitoring data from the MEF, sampling, and associated water chemistry analyses were funded by the Northern Research Station of the USDA Forest Service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven J. Hall.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3098 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Curtinrich, H.J., Sebestyen, S.D., Griffiths, N.A. et al. Warming Stimulates Iron-Mediated Carbon and Nutrient Cycling in Mineral-Poor Peatlands. Ecosystems 25, 44–60 (2022). https://doi.org/10.1007/s10021-021-00639-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-021-00639-3

Keywords

Navigation