Skip to main content
Log in

Synthesis of MoS2 nanoparticles grown on crumpled 3D graphene microballs using a microfluidic droplet generator

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

In this study, the MoS2 nanoparticles grown on crumpled 3D graphene microball (3D GM–MoS2) was synthesized using a microfluidic droplet generator with thermal evaporation-driven capillary compression and hydrothermal reaction. The morphology and size of 3D GM–MoS2 are controlled by the concentration of nano-sized graphene oxide (GO) and the flow rate of oil phase on the droplet generator. The 3D GM–MoS2 with fully sphere-shape and uniform size (~ 5 µm), and homogeneous growth of MoS2 nanoparticles could be synthesized at the flow rate of the oil phase of 60 µL/min with the optimized GO concentration of 1.0 mg/mL, and (NH4)2MoS4 concentration of 2.0 mg/mL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Geim AK, Novoselov KS (2009) The rise of graphene. Nanosci Technol. https://doi.org/10.1142/9789814287005_0002

    Article  Google Scholar 

  2. Griep MH, Sandoz-Rosado E, Tumlin TM, Wetzel E (2016) Enhanced Graphene mechanical properties through ultrasmooth copper growth substrates. Nano Lett 16(3):1657–1662. https://doi.org/10.1021/acs.nanolett.5b04531

    Article  CAS  Google Scholar 

  3. Xu Y, Shi G, Duan X (2015) Self-Assembled Three-dimensional graphene macrostructures: synthesis and applications in supercapacitors. Acc Chem Res 48(6):1666–1675. https://doi.org/10.1021/acs.accounts.5b00117

    Article  CAS  Google Scholar 

  4. Sun Z, Fang S, Hu YH (2020) 3D graphene meresaterials: from understanding to design and synthesis control. Chem Rev 120(18):10336–10453. https://doi.org/10.1021/acs.chemrev.0c00083

    Article  CAS  Google Scholar 

  5. Qiu B, Xing M, Zhang J (2018) Recent advances in three-dimensional graphene based materials for catalysis applications. Chem Soc Rev 47(6):2165–2216. https://doi.org/10.1039/c7cs00904f

    Article  CAS  Google Scholar 

  6. Chen T, Zhou Y, Sheng Y, Wang X, Zhou S, Warner JH (2018) Hydrogen-assisted growth of large-area continuous films of MoS2 on monolayer graphene. ACS Appl Mater Interfaces 10(8):7304–7314. https://doi.org/10.1021/acsami.7b14860

    Article  CAS  Google Scholar 

  7. Sun T, Li Z, Liu X, Ma L, Wang J, Yang S (2016) Facile construction of 3D graphene/MoS2 composites as advanced electrode materials for supercapacitors. J Power Sources 331:180–188. https://doi.org/10.1016/j.jpowsour.2016.09.036

    Article  CAS  Google Scholar 

  8. Li X, Guo S, Li W, Ren X, Su J, Song Q, Sobrido AJ, Wei B (2018) Edge-rich MoS2 grown on edge-oriented three-dimensional graphene glass for high-performance hydrogen evolution. Nano Energy 57:388–397. https://doi.org/10.1016/j.nanoen.2018.12.044

    Article  CAS  Google Scholar 

  9. Chen Y, Ma W, Cai K, Yang X, Huang C (2017) In situ growth of polypyrrole onto three-dimensional tubular MoS2 as an advanced negative electrode material for supercapacitor. Electrochim Acta 246:615–624. https://doi.org/10.1016/j.electacta.2017.06.102

    Article  CAS  Google Scholar 

  10. Ren J, Ren RP, Lv YK (2018) A flexible 3D graphene@CNT@MoS2 hybrid foam anode for high-performance lithium-ion battery. Chem Eng J 353:419–424. https://doi.org/10.1016/j.cej.2018.07.139

    Article  CAS  Google Scholar 

  11. Kang MA, Kim SJ, Song W, Chang S, Park CY, Myung S, Lim J, Lee SS, An KS (2017) Fabrication of flexible optoelectronic devices based on MoS2 /graphene hybrid patterns by a soft lithographic patterning method. Carbon 116:167–173. https://doi.org/10.1016/j.carbon.2017.02.001

    Article  CAS  Google Scholar 

  12. Hong W, Shim GW, Yang SY, Jung DY, Choi SY (2018) Improved electrical contact properties of MoS2-graphene lateral heterostructure. Adv Funct Mater. https://doi.org/10.1002/adfm.201807550

    Article  Google Scholar 

  13. Hu W, Wang T, Zhang R, Yang J (2016) Effects of interlayer coupling and electric fields on the electronic structures of graphene and MoS2 heterobilayers. J Mater Chem C 4(9):1776–1781. https://doi.org/10.1039/C6TC00207B

    Article  CAS  Google Scholar 

  14. Chen W, Yang Y, Zhang Z, Kaxiras E (2017) Properties of in-plane graphene/MoS2 heterojunctions. 2D Mater 4(4):045001. https://doi.org/10.1088/2053-1583/aa8313

    Article  CAS  Google Scholar 

  15. Choi SH, Ko YN, Lee JK, Kang YC (2015) 3D MoS2-graphene microspheres consisting of multiple nanospheres with superior sodium ion storage properties. Adv Funct Mater 25(12):1780–1788. https://doi.org/10.1002/adfm.201402428

    Article  CAS  Google Scholar 

  16. Carraro F, Calvillo L, Cattelan M, Favaro M, Righetto M, Nappini S, Píš I, Celorrio V, Fermín DJ, Martucci A, Agnoli S, Granozzi G (2015) Fast one-pot synthesis of MoS2/crumpled graphene p–n nanonjunctions for enhanced photoelectrochemical hydrogen production. ACS Appl Mater Interfaces 7(46):25685–25692. https://doi.org/10.1021/acsami.5b06668

    Article  CAS  Google Scholar 

  17. Lee JY, Lee KH, Kim YJ, Ha JS, Lee SS, Son JG (2015) Sea-urchin-inspired 3D crumpled graphene balls using simultaneous etching and reduction process for high-density capacitive energy storage. Adv Funct Mater 25(23):3606–3614. https://doi.org/10.1002/adfm.201404507

    Article  CAS  Google Scholar 

  18. El Rouby WMA (2015) Crumpled graphene: preparation and applications. RSC Adv 5(82):66767–66796. https://doi.org/10.1039/C5RA10289H

    Article  CAS  Google Scholar 

  19. Kalluri S, Seng KH, Guo Z, Du A, Konstantinov K, Liu HK, Dou SX (2015) Sodium and lithium storage properties of spray-dried molybdenum disulfide-graphene hierarchical microspheres. Sci Rep. https://doi.org/10.1038/srep11989

    Article  Google Scholar 

  20. Han DJ, Jung JH, Choi JS, Kim YT, Seo TS (2013) Synthesis of a 3D graphite microball using a microfluidic droplet generator and its polymer composite with core–shell structure. Lab Chip 13(20):4006. https://doi.org/10.1039/C3LC50838B

    Article  CAS  Google Scholar 

  21. Bae JG, Park M, Kim DH, Lee EY, Kim WS, Seo TS (2016) Tunable three-dimensional graphene assembly architectures through controlled diffusion of aqueous solution from a micro-droplet. NPG Asia Mater 8(11):e329–e329. https://doi.org/10.1038/am.2016.176

    Article  CAS  Google Scholar 

  22. Xia Y, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28(1):153–184. https://doi.org/10.1146/annurev.matsci.28.1.153

    Article  CAS  Google Scholar 

  23. Koroteev VO, Stolyarova SG, Kotsun AA, Modin E, Makarova AA, Shubin YV, Plyusnin PE, Okotrub AV, Bulusheva LG (2020) Nanoscale coupling of MoS2 and graphene via rapid thermal decomposition of ammonium tetrathiomolybdate and graphite oxide for boosting capacity of Li-ion batteries. Carbon 173:194–204. https://doi.org/10.1016/j.carbon.2020.10.097

    Article  CAS  Google Scholar 

  24. Chang U, Lee JT, Yun JM, Lee B, Lee SW, Joh HI, Eom KS, Fuller TF (2018) In situ self-formed nanosheet MoS3/reduced graphene oxide material showing superior performance as a lithium-ion battery cathode. ACS Nano 13(2):1490–1498. https://doi.org/10.1021/acsnano.8b07191

    Article  CAS  Google Scholar 

  25. Fang Q, Shen Y, Chen B (2015) Synthesis, decoration and properties of three-dimensional graphene-based macrostructures: a review. Chem Eng J 264:753–771. https://doi.org/10.1016/j.cej.2014.12.001

    Article  CAS  Google Scholar 

  26. Chen JM, Wang CS (1974) Second order Raman spectrum of MoS2. Solid State Commun 14(9):857–860. https://doi.org/10.1016/0038-1098(74)90150-1

    Article  CAS  Google Scholar 

  27. Ye M, Winslow D, Zhang D, Pandey R, Yap YK (2015) Recent advancement on the optical properties of two-dimensional molybdenum disulfide (MoS2) thin films. Photonics 2(1):288–307. https://doi.org/10.3390/photonics2010288

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Engineering Research Center of Excellence Program of Korea Ministry of Science, ICT & Future Planning (MSIP)/National Research Foundation of Korea (NRF) (2021R1A5A6002853); National Research Foundation of Korea (NRF), and The Ministry of Science and ICT (MSIT) (2020R1A2C1003960). This research has been done by the author(s) working at the Department of Pharmaceutical Engineering of Dankook University. Department of Pharmaceutical Engineering was supported by the Research-Focused Department Promotion Project as a part of the University Innovation Support Program 2020 to Dankook University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jae Hwan Jung or Tae Seok Seo.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, M., Kim, S., Jung, J.H. et al. Synthesis of MoS2 nanoparticles grown on crumpled 3D graphene microballs using a microfluidic droplet generator. Carbon Lett. 31, 831–836 (2021). https://doi.org/10.1007/s42823-021-00253-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-021-00253-2

Keywords

Navigation