Skip to main content
Log in

A Rigidity Property for the Novikov Equation and the Asymptotic Stability of Peakons

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider weak solutions of the Novikov equation that lie in the energy space \(H^1\) with non-negative momentum densities. We prove that a special family of such weak solutions, namely the peakons, is \(H^1\)-asymptotically stable. Such a result is based on a rigidity property of the Novikov solutions which are \(H^1\)-localized and the corresponding momentum densities are localized to the right, which extends the earlier work of Molinet (Arch Ration Mech Anal 230:185–230, 2018; Nonlinear Anal Real World Appl 50:675–705, 2019) for the Camassa–Holm and Degasperis–Procesi peakons. The main new ingredients in our proof consist of exploring the uniform in time exponential decay property of the solutions from the localization of the \(H^1\) energy and redesigning the localization of the total mass from the finite speed of propagation property of the momentum densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ambrosio, L.: Transport equation and Cauchy problem for \(BV\) vector fields. Invent. Math. 158, 227–260, 2004

    Article  ADS  MathSciNet  Google Scholar 

  2. Benjamin, T.B.: The stability of solitary waves. Proc. Roy. Soc. London Ser. A 328, 153–183, 1972

    ADS  MathSciNet  Google Scholar 

  3. Bona, J.: On the stability theory of solitary waves. Proc. Roy. Soc. London Ser. A 344, 363–374, 1975

    ADS  MathSciNet  MATH  Google Scholar 

  4. Bona, J.L., Souganidis, P.E., Strauss, W.A.: Stability and instability of solitary waves of Korteweg-de Vries type. Proc. Roy. Soc. London Ser. A 411, 395–412, 1987

    ADS  MathSciNet  MATH  Google Scholar 

  5. Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664, 1993

    Article  ADS  MathSciNet  Google Scholar 

  6. Cazenave, T., Lions, P.-L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Comm. Math. Phys. 85, 549–561, 1982

    Article  ADS  MathSciNet  Google Scholar 

  7. Chen, R.M., Di, H., Liu, Y.: Stability of peakons for a class of cubic quasilinear shallow-water equations. submitted, 2019

  8. Chen, R.M., Hu, T., Liu, Y.: The integrable shallow-water models with cubic nonlinearity. submitted, 2019

  9. Chen, R.M., Pelinovsky, D.E.: \({W}^{1,\infty }\) instability of \({H}^1\)-stable peakons in the Novikov equation (2019). arXiv preprint arXiv:1911.08440

  10. El Dika, K., Molinet, L.: Exponential decay of \(H^1\)-localized solutions and stability of the train of \(N\) solitary waves for the Camassa-Holm equation. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 365, 2313–2331, 2007

    ADS  MathSciNet  MATH  Google Scholar 

  11. Fuchssteiner, B., Fokas, A.S.: Symplectic structures, their Bäcklund transformations and hereditary symmetries. Phys. D 4, 47–66, 1981/82

  12. Geng, X., Xue, B.: An extension of integrable peakon equations with cubic nonlinearity. Nonlinearity 22, 1847–1856, 2009

    Article  ADS  MathSciNet  Google Scholar 

  13. Germain, P., Pusateri, F., Rousset, F.: Asymptotic stability of solitons for mKdV. Adv. Math. 299, 272–330, 2016

    Article  MathSciNet  Google Scholar 

  14. Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry. I. J. Funct. Anal. 74, 160–197, 1987

    Article  MathSciNet  Google Scholar 

  15. Hone, A.N.W., Lundmark, H., Szmigielski, J.: Explicit multipeakon solutions of Novikov’s cubically nonlinear integrable Camassa-Holm type equation. Dyn. Partial Differ. Equ. 6, 253–289, 2009

    Article  MathSciNet  Google Scholar 

  16. Hone, A.N.W., Wang, J.P.: Integrable peakon equations with cubic nonlinearity. J. Phys. A 41, 372002, 2008. 10

    Article  MathSciNet  Google Scholar 

  17. Iftimie, D.: Large time behavior in perfect incompressible flows. Séminaires & Congrés 15, 119–179, 2007

    MathSciNet  MATH  Google Scholar 

  18. Liu, X., Liu, Y., Qu, C.: Stability of peakons for the Novikov equation. J. Math. Pures Appl. 9(101), 172–187, 2014

    Article  MathSciNet  Google Scholar 

  19. Martel, Y., Merle, F.: Asymptotic stability of solitons for subcritical generalized KdV equations. Arch. Ration. Mech. Anal. 157, 219–254, 2001

    Article  MathSciNet  Google Scholar 

  20. Martel, Y., Merle, F.: Asymptotic stability of solitons of the subcritical gkdv equations revisited. Nonlinearity 18, 55–80, 2005

    Article  ADS  MathSciNet  Google Scholar 

  21. Martel, Y., Merle, F.: Asymptotic stability of solitons of the gKdV equations with general nonlinearity. Math. Ann. 341, 391–427, 2008

    Article  MathSciNet  Google Scholar 

  22. Mizumachi, T.: Large time asymptotics of solutions around solitary waves to the generalized Korteweg-de Vries equations. SIAM J. Math. Anal. 32, 1050–1080, 2001

    Article  MathSciNet  Google Scholar 

  23. Molinet, L.: A Liouville property with application to asymptotic stability for the Camassa-Holm equation. Arch. Ration. Mech. Anal. 230, 185–230, 2018

    Article  MathSciNet  Google Scholar 

  24. Molinet, L.: A rigidity result for the Holm-Staley \(b\)-family of equations with application to the asymptotic stability of the Degasperis-Procesi peakon. Nonlinear Anal. Real World Appl. 50, 675–705, 2019

    Article  MathSciNet  Google Scholar 

  25. Natali, F., Pelinovsky, D.E.: Instability of \(H^1\)-stable peakons in the Camassa-Holm equation. J. Differential Equations 268, 7342–7363, 2020

    Article  ADS  MathSciNet  Google Scholar 

  26. Novikov, V.: Generalizations of the Camassa-Holm equation. J. Phys. A 42, 342002, 2009. 14

    Article  MathSciNet  Google Scholar 

  27. Palacios, J.M.: Asymptotic stability of peakons for the Novikov equation. J. Differential Equations 269, 7750–7791, 2020

    Article  ADS  MathSciNet  Google Scholar 

  28. Pego, R.L., Weinstein, M.I.: Asymptotic stability of solitary waves. Comm. Math. Phys. 164, 305–349, 1994

    Article  ADS  MathSciNet  Google Scholar 

  29. Russell, J.S.: Report on waves, made to the meetings of the British Association in 1842–43., London 1845

  30. Weinstein, M.I.: Lyapunov stability of ground states of nonlinear dispersive evolution equations. Comm. Pure Appl. Math. 39, 51–67, 1986

    Article  MathSciNet  Google Scholar 

  31. Wu, X., Yin, Z.: Global weak solutions for the Novikov equation. J. Phys. A 44, 055202, 2011. 17

    Article  ADS  MathSciNet  Google Scholar 

  32. Wu, X., Yin, Z.: Well-posedness and global existence for the Novikov equation. Ann. Sc. Norm. Super. Pisa Cl. Sci. 5(11), 707–727, 2012

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research of R. M. Chen was partially supported by the National Science Foundation under Grants DMS-1613375 and DMS-1907584. The research of D. Wang was partially supported by the National Science Foundation under Grants DMS-1613213 and DMS-1907519. The research of R. Xu was partially supported by the National Natural Science Foundation of China through grant 11471087. The research of W. Lian was partially supported by China Scholarship Council under Grant 201906680018 and the Ph.D. Student Research and Innovation Fund of the Fundamental Research Funds for the Central Universities 3072020GIP0407.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Lian.

Additional information

Communicated by C. Dafermos.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Proofs of Lemma 3.1 and Lemma 4.1

Appendix A. Proofs of Lemma 3.1 and Lemma 4.1

1.1 Proof of Lemma 3.1

Proof

For a fixed \(t_0\in {\mathbb {R}}\), we approximate \( u(t_{0})\) by \(u_{0, n}=\zeta _{n}*u(t_{0})\) which converges to \(u(t_{0})\) in Y. Thanks to the continuity result in Proposition 2.3, the solution sequence \(\{u_{n}\}\) induced by \(\{u_{0, n}\}\) to (2.4) lies in \( C\left( {\mathbb {R}} ; H^{\infty }({\mathbb {R}})\right) \). Hence for an arbitrary positive T,

$$\begin{aligned} u_{n} \rightarrow u \text { in } C\left( \left[ t_{0}-T, t_{0}+T\right] ; H^{1}({\mathbb {R}}) \right) . \end{aligned}$$
(A.1)

For this T, there exists an \(n_0\geqq 0\) such that, for all \(n\geqq n_0\),

$$\begin{aligned} \Vert u^2_n-u^2\Vert _{L^\infty ((t_0-T,t_0+T)\times {\mathbb {R}})}\leqq \frac{\alpha c_0}{2L}, \end{aligned}$$

which combines with (3.1) implying

$$\begin{aligned} \sup _{[t_0-T,t_0+T]}\Vert u^2_n\Vert _{L^\infty (|x-\rho (t)|>R_0)}\leqq \frac{\alpha c_0}{L}. \end{aligned}$$
(A.2)

For the sake of convenience, in the following arguments, we leave out the subscript n of \(u_n\). For \(t\in [t_0-T,t_0]\) and \(R>R_0\), differentiating \(I_{t_{0}}^{+R}(t)\), we have

$$\begin{aligned} \frac{\mathrm {d}}{\mathrm {d} t} I_{t_{0}}^{+R}(t)=-\alpha \rho _t(t) \int _{{\mathbb {R}}} \Psi ^{\prime }_{K}\left( u^{2}+u_{x}^{2}\right) + \int _{{\mathbb {R}}}\Psi _{K} \frac{\mathrm {d}}{\mathrm {d} t} \left( u^{2}+u_{x}^{2}\right) . \end{aligned}$$
(A.3)

Next we estimate the second term on the right-hand side. A direct computation yields that

$$\begin{aligned} \int _{{\mathbb {R}}} \frac{\mathrm {d}}{\mathrm {d} t} \left( u^{2}+u_{x}^{2}\right) \Psi _{K}=2 \int _{{\mathbb {R}}} u u_{t} \Psi _{K}+2 \int _{{\mathbb {R}}} u_{x} u_{x t} \Psi _{K}. \end{aligned}$$

Using (2.4), we have

$$\begin{aligned} 2 \int _{{\mathbb {R}}} u u_{t} \Psi _{K}&=-2 \int _{{\mathbb {R}}} u^{3} u_{x} \Psi _{K}+2 \int _{{\mathbb {R}}} u \Psi _{K}^{\prime }h_{1}+2 \int _{{\mathbb {R}}} u_{x} \Psi _{K} h_{1}- \int _{{\mathbb {R}}} u \Psi _{K} h_{2}, \end{aligned}$$
(A.4)

where \(h_1 :=p*\left( \frac{3}{2}uu_{x}^{2}+u^{3}\right) \) and \(h_2 :=p*u^{3}_{x}\). Furthermore,

$$\begin{aligned} 2 \int _{{\mathbb {R}}} u_{x} u_{x t} \Psi _{K} =&\ 2 \int _{{\mathbb {R}}} \partial _{x}(u_{x} \Psi _{K})u^{2}u_{x} - 2 \int _{{\mathbb {R}}} u_{x} \Psi _{K} h_{1} + 2\int _{{\mathbb {R}}} u_{x} \Psi _{K} \left( \frac{3}{2}uu^{2}_{x}+u^{3} \right) \nonumber \\&+ \int _{{\mathbb {R}}} u\left( \Psi _{K}\partial ^{2}_{x}h_{2}+\Psi _{K}^{\prime }\partial _{x}h_{2} \right) \nonumber \\ =&\int _{{\mathbb {R}}} u^{2}u_{x}^{2}\Psi _{K}^{\prime }+2 \int _{{\mathbb {R}}} u_{x} \Psi _{K} h_{1} + 2\int _{{\mathbb {R}}} u^3 u_{x} \Psi _{K} \nonumber \\&+ \int _{{\mathbb {R}}} u\left( h_{2}\Psi _{K} + \Psi _{K}^{\prime }\partial _{x}h_{2} \right) . \end{aligned}$$
(A.5)

Now combining (A.4) and (A.5), we arrive at

$$\begin{aligned} \int _{{\mathbb {R}}} \frac{\mathrm {d}}{\mathrm {d} t} \left( u^{2}+u_{x}^{2}\right) \Psi _{K}=\int _{{\mathbb {R}}} u^{2} u_{x}^{2} \Psi _{K}^{\prime }+ \int _{{\mathbb {R}}} u\Psi _{K}^{\prime } \partial _{x} h_{2}+2 \int _{{\mathbb {R}}} uh_{1}\Psi _{K}^{\prime }, \end{aligned}$$
(A.6)

which, together with (A.3) and (A.6), implies

$$\begin{aligned} \frac{\mathrm {d}}{\mathrm {d} t} I_{t_{0}}^{+R}(t)=&-\alpha \rho _t(t) \int _{{\mathbb {R}}} \Psi _{K}^{\prime }\left( u^{2}+u_{x}^{2}\right) +\int _{{\mathbb {R}}}u^{2} u_{x}^{2}\Psi _{K}^{\prime }+ \int _{{\mathbb {R}}} \left( u \partial _{x} h_{2}+2uh_{1}\right) \Psi _{K}^{\prime } \nonumber \\ =:&-\alpha \rho _t(t) \int _{{\mathbb {R}}} \Psi _{K}^{\prime }\left( u^{2}+u_{x}^{2}\right) +J_{1}+J_{2}. \end{aligned}$$

Next we estimate \(J_1\) and \(J_2\). We write \(J_1\) as

$$\begin{aligned} J_{1}&=\int _{|x-\rho (t)|<R_{0}}u^{2} u_{x}^{2}\Psi _{K}^{\prime }+\int _{|x-\rho (t)|>R_{0}}u^{2} u_{x}^{2}\Psi _{K}^{\prime } =: J_{11}+J_{12}. \end{aligned}$$

From \(R\geqq R_0\), for \( |x-\rho (t)|<R_{0} \) and \(t\in [t_0-T,t_0]\), we have

$$\begin{aligned}&x-\rho (t_{0})- R-\alpha (\rho (t)-\rho (t_{0})) = x-\rho (t) \\&\quad -R+(\rho (t)-\alpha \rho (t))-\left( \rho (t_{0})-\alpha \rho (t_{0})\right) \\&\quad \leqq R_{0}-R-(1-\alpha ) c_0\left( t_{0}-t\right) , \end{aligned}$$

which, together with (3.5) and the non-negativity of \(\Psi _{K}\), shows that

$$\begin{aligned} J_{11}(t)&\leqq 2 R_0 C_0 \Vert u(t)\Vert ^{2}_{L^{\infty }}\left\| u_{x}(t)\right\| _{L^{2}}^{2}e^{R_{0} / K} e^{-R / K} e^{-\frac{(1-\alpha )}{K} c_0\left( t_{0}-t\right) } \nonumber \\&\lesssim \Vert u(t)\Vert ^4_{H^{1}} e^{R_{0} / K} e^{-R / K} e^{-\frac{(1-\alpha )}{K} c_0\left( t_{0}-t\right) }. \end{aligned}$$
(A.7)

As for \(J_{12}\), it holds that

$$\begin{aligned} J_{12}&\leqq \Vert u(t)\Vert ^{2}_{L^{\infty }\left( |x-\rho (t)|>R_{0}\right) } \int _{|x-\rho (t)|>R_{0}}u_{x}^{2}\Psi _{K}^{\prime }. \end{aligned}$$
(A.8)

From \(|\Psi _{K}^{\prime \prime }|<\frac{1}{K}\Psi _{K}^{\prime }\) and (3.5), for \(J_2\) we have

$$\begin{aligned} J_2=&\int _{{\mathbb {R}}} \left( u \partial _{x} h_{2}+2uh_{1}\right) \Psi _{K}^{\prime } =- \int _{{\mathbb {R}}} u_x h_{2}\Psi _{K}^{\prime }- \int _{{\mathbb {R}}}u h_{2}\Psi _{K}^{\prime \prime } +\int _{{\mathbb {R}}} 2uh_{1}\Psi _{K}^{\prime } \\ \leqq&\int _{{\mathbb {R}}} u (p*u^3)\Psi _{K}^{\prime }+\int _{{\mathbb {R}}}\frac{u}{K}(p*u^3)\Psi _{K}^{\prime }+\int _{{\mathbb {R}}} 2u \left( p*\left( \frac{3}{2}u^{3}+u^{3}\right) \right) \Psi _{K}^{\prime } \\ \leqq&\left( 6+\frac{1}{K}\right) \Vert u(t)\Vert _{L^{\infty }} \int _{{\mathbb {R}}}(p*u^3)\Psi _{K}^{\prime } \leqq \ L\Vert u(t)\Vert ^{2}_{L^{\infty }} \int _{{\mathbb {R}}}u^2 \Psi _{K}^{\prime }, \end{aligned}$$

where \(L :=\left( 6+\frac{1}{K}\right) \left( \frac{K^2}{K^{2}-1}\right) \). Therefore applying similar treatment to \(J_2\), we also have

$$\begin{aligned} J_2\leqq&L\Vert u(t)\Vert ^{2}_{L^{\infty }\left( |x-\rho (t)|<R_{0}\right) } \int _{|x-\rho (t)|<R_{0}}u^2 \Psi _{K}^{\prime }+L\Vert u(t)\Vert ^{2}_{L^{\infty }\left( |x-\rho (t)|>R_{0}\right) } \\&\quad \int _{|x-\rho (t)|>R_{0}}u^2 \Psi _{K}^{\prime } \\ =:&\ J_{21}+J_{22}. \end{aligned}$$

Similarly, we have

$$\begin{aligned}&J_{21}\lesssim \Vert u(t)\Vert ^{4}_{H^{1}} e^{R_{0} / K} e^{-R / K} e^{-\frac{(1-\alpha )}{K} c_0\left( t_{0}-t\right) }, \end{aligned}$$
(A.9)
$$\begin{aligned}&J_{22} \leqq L \Vert u(t)\Vert ^{2}_{L^{\infty \left( |x-\rho (t)|>R_{0}\right) }} \int _{|x-\rho (t)|>R_{0}}u^{2}\Psi _{K}^{\prime }. \end{aligned}$$
(A.10)

Combining (A.7)–(A.10) and (A.2) we see that there exists a sufficiently large \(R>R_0\) such that

$$\begin{aligned}&-\alpha \rho _t(t) \int _{{\mathbb {R}}} \Psi _{K}^{\prime }\left( u^{2} +u_{x}^{2}\right) +J_{12}+J_{22} \\&\quad \leqq \left( -\alpha c_0+L \Vert u(t)\Vert ^{2}_{L^{\infty }\left( |x-\rho (t)|>R_{0}\right) } \right) \int _{{\mathbb {R}}} \Psi _{K}^{\prime }\left( u^{2} +u_{x}^{2}\right) <0, \end{aligned}$$

and

$$\begin{aligned} \frac{\mathrm {d}}{\mathrm {d} t} I_{t_{0}}^{+R}(t) \leqq {\tilde{C}} e^{-R / K} e^{-\frac{(1-\alpha )}{K} c_0\left( t_{0}-t\right) } \ \ \text {for} \ R \geqq R_{0} \ \text {and} \ t \in \left[ t_{0}-T, t_{0}\right] , \end{aligned}$$

where \({\tilde{C}}\) depends on K, \(R_0\) and \({\mathcal {E}}(u)\). Since T is an arbitrary positive number, integrating from t to \(t_0\) and by (A.1), we have

$$\begin{aligned} I_{t_{0}}^{+R}\left( t_{0}\right) -I_{t_{0}}^{+R}(t) \leqq C e^{-R / K}, \quad \forall \ t \leqq t_{0}, \end{aligned}$$

where C depends on K, \(\alpha \), \(R_0\), \({\mathcal {E}}(u)\) and \(c_0\). One may follow the same steps to obtain

$$\begin{aligned} I_{t_{0}}^{-R}\left( t\right) -I_{t_{0}}^{-R}(t_{0}) \leqq C e^{-R / K}, \quad \forall \ t \geqq t_{0}, \end{aligned}$$

which completes the proof. \(\quad \square \)

1.2 Proof of Lemma 4.1

Proof

As in the proof of Lemma 4.1 in [23], utilizing the implicit function theorem, similarly we can derive (4.3). And as for the Novikov equation (2.4), each solution \(u\in C\left( {\mathbb {R}}; H^1({\mathbb {R}})\right) \cap C^1\left( {\mathbb {R}}; L^2({\mathbb {R}})\right) \) indicates that the mapping \(t \mapsto \rho (t)\) is \(C^1\). Setting \(R(t,x) :=\sqrt{c} \varphi (x-\rho (t))\) and \(w :=u-R\), we can check that R satisfies

$$\begin{aligned}&\partial _{t} R+(\rho _t-c) \partial _{x} R+R^{2} \partial _{x} R+\left( 1-\partial _{x}^{2}\right) ^{-1} \partial _{x}\left( \frac{3}{2}RR^{2}_{x}+R^{3}\right) \\&\quad +\frac{1}{2}\left( 1-\partial _{x}^{2}\right) ^{-1}R^{3}_{x}=0, \end{aligned}$$

which gives

$$\begin{aligned} w_{t}-(\rho _t-c) \partial _{x} R&=-(w+R)^2 \partial _{x} w-\left( (w+R)^2-R^2\right) \partial _x R \\&\quad - \frac{1}{2} \left( 1-\partial _{x}^{2}\right) ^{-1} \left[ (w_x+ R_x)^3-R^3\right] \nonumber \\&\quad -\left( 1-\partial _{x}^{2}\right) ^{-1} \partial _{x}\left( \frac{3}{2} (w+R)(w_x+ R_x)^2-\frac{3}{2}RR^{2}_{x}+(w+ R)^3-R^3 \right) . \end{aligned}$$

Taking the \(L^2\)-scalar product of this last equality with \((\zeta _{n_0}*\varphi )^{\prime }(\cdot -\rho (t))\), similarly we have

$$\begin{aligned} \left| (\rho _t-c)\left( \int _{{\mathbb {R}}} \partial _{x} R \partial _{x}\left( \zeta _{n_{0}} * \varphi \right) (\cdot -\rho (t))+ \Vert w\Vert _{H^{1}}\right) \right| \lesssim K c \varepsilon _{0}. \end{aligned}$$

The rest of the proof is similar to [23]. \(\quad \square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R.M., Lian, W., Wang, D. et al. A Rigidity Property for the Novikov Equation and the Asymptotic Stability of Peakons. Arch Rational Mech Anal 241, 497–533 (2021). https://doi.org/10.1007/s00205-021-01658-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-021-01658-z

Navigation