Skip to main content
Log in

Two-dimensional thermometry measurements in confined swirl flames using filtered Rayleigh scattering

  • Regular Paper
  • Published:
Applied Physics B Aims and scope Submit manuscript

A Correction to this article was published on 04 June 2021

This article has been updated

Abstract

Two-dimensional temperature measurements using filtered Rayleigh scattering (FRS) were performed in confined CH4/air swirl flames at atmospheric pressure. The investigated burner has a combustion chamber consisted of four quartz windows. The combustion chamber is 160 mm high with a square section of 50 × 50 mm2. Measurements were challenging due to the strong interference from the incident laser impinging onto quartz windows, wall reflection and Mie scattering. Comparisons between the FRS and a conventional probe-based thermocouple were conducted through several investigated cases. Five operating conditions were studied with the equivalence ratios (Φ) of the premixed CH4/air mixture covered a range of 0.67–0.83. Under each condition, five cross sections (C.S.) of the swirl flame were investigated and compared to analyze (1) the flame structures and temperature distributions of the instantaneous FRS images and (2) the uniform temperature radius as well as the joint probability density function (PDF) profiles of the averaged FRS signals. Results indicate that FRS can effectively suppress the background scattering and the average standard deviation of FRS measurements throughout the experiment is < 7.5%. The thermochemical state of the confined swirl flames is strongly influenced by Φ, leading to varieties of flame structures and temperature distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

References

  1. S.B. Pope, Annu. Rev. Fluid Mech. 19, 237 (1987)

    Article  ADS  Google Scholar 

  2. U. Doll, M. Fischer, G. Stockhausen, C.E. Willert, Frequency scanning filtered Rayleigh scattering in combustion experiments. In: 16th Int Symp on applications of laser techniques to fluid mechanics, 9–12 July, (Lisbon, Portugal, 2012)

  3. J.J. Keller, AIAA J. 33, 2280 (1995)

    Article  ADS  Google Scholar 

  4. C.O. Paschereit, E. Gutmark, W. Weisenstein, Combust. Sci. Technol. 138, 213 (1998)

    Article  Google Scholar 

  5. S. Candel, P. Combust. Inst. 29, 1 (2002)

    Article  Google Scholar 

  6. J.G. Lee, D.A. Santavicca, J. Propul. Power 19, 735 (2003)

    Article  Google Scholar 

  7. N. Syred, Prog. Energy Combust. Sci. 32, 93 (2006)

    Article  Google Scholar 

  8. W. Meter, P. Weigand, X.R. Duan, R. Giezendanne-Thoben, Combust. Flame 150, 2 (2007)

    Article  Google Scholar 

  9. I.T. Monje, J.A. Sutton, AIAA Aerospace Science Meeting, 8–12 January (Kissimmee, Florida, 2018).

    Google Scholar 

  10. A.C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach Publishers, Amsterdam, 1996).

    Book  Google Scholar 

  11. R.P. Lucht, Combust. Flame 133, 507 (2002)

    Article  Google Scholar 

  12. K. Kohse-Höinghaus, R.S. Barlow, M. Aldén, J. Wolfrum, Proc. Combust. Inst. 30, 89 (2005)

    Article  Google Scholar 

  13. R.S. Barlow, Proc. Combust. Inst. 31, 49 (2007)

    Article  Google Scholar 

  14. R. Pitz, R. Cattolica, F. Robben, L. Talbot, Combust. Flame 27, 313 (1976)

    Article  Google Scholar 

  15. J.A. Lock, R.G. Seasholtz, W.T. John, Appl. Optics 31, 2839 (1992)

    Article  ADS  Google Scholar 

  16. J. Panda, R.G. Seasholtz, AIAA J. 99, 0296 (1999)

    Google Scholar 

  17. D.A. Greenhalgh, Quantitative CARS Spectroscopy (Advances in Non-linear Spectroscopy, New York, 1988).

    Google Scholar 

  18. E.D. Fouad, Vib. Spectrosc. 55, 1 (2011)

    Article  ADS  Google Scholar 

  19. R.W. Dibble, R.E. Hollenbach, Laser Rayleigh thermometry in turbulent flames. Symp. (Int.) Combust. 18, 1489 (1981)

    Article  Google Scholar 

  20. F.C. Gouldin, R.N. Halthore, Exp. Fluids 4, 269 (1996)

    Article  Google Scholar 

  21. R.B. Miles, W.R. Lempert, J.N. Forkey, Meas. Sci. Technol. 12, 33 (2001)

    Article  ADS  Google Scholar 

  22. D. Hofmann, A. Leipert, Temperature field measurements in a sooting flame by filtered Rayleigh scattering (FRS). Symp. (Int.) Combust. 26, 945 (1996)

    Article  Google Scholar 

  23. G.S. Elliott, N. Glumac, C.D. Carter, A.S. Nejad, Combust. Sci. Technol. 125, 351 (1997)

    Article  Google Scholar 

  24. G.S. Elliott, N. Glumac, C.D. Carter, 37th AIAA Aerospace Sciences Meeting and Exhibit, 11–14 January (Reno, Nevada, 1999).

    Google Scholar 

  25. A.P. Yalin, R.B. Miles, Thermophys. Heat Transf. 14, 210 (2000)

    Article  Google Scholar 

  26. G.S. Elliott, N. Glumac, C.D. Carter, Meas. Sci. Technol. 12, 45 (2001)

    Google Scholar 

  27. D. Most, A. Leipertz, Appl. Opt. 30, 5379 (2001)

    Article  ADS  Google Scholar 

  28. M. Boguszko, G.S. Elliott, Prog. Aerosp. Sci. 41, 93 (2005)

    Article  Google Scholar 

  29. F. David, B.M. Goldberg, M.N. Shneider, R.B. Miles, AIAA J. 57, 5067 (2019)

    Article  ADS  Google Scholar 

  30. T.A. McManus, I.T. Monje, J.A. Sutton, APPL. PHYS. B-LASERS O. 125, 13 (2019)

    Article  ADS  Google Scholar 

  31. T.A. McManus, J.A. Sutton, Exp. Fluids 61, 134 (2020)

    Article  Google Scholar 

  32. G. Tenti, C. Boley, R. Desai, Can. J. Phys. 52, 285 (1974)

    Article  ADS  Google Scholar 

  33. A.T. Young, G.W. Kattawar, Appl. Optics 22, 3668 (1983)

    Article  ADS  Google Scholar 

  34. J. Forkey: Development and demonstration of filtered Rayleigh scattering: a laser based flow diagnostic for planar measurement of velocity, temperature and pressure (PhD thesis, Princeton University 1996)

  35. B. Yan, L. Chen, M. Li, S. Chen, C. Gong, F.R. Yang, Y.G. Wu, J.N. Zhou, J.H. Mu, Chin. Phys. B 29, 024701 (2020)

    Article  ADS  Google Scholar 

  36. J.P. Moeck, J.F. Bourgouin, D. Durox, T. Schuller, S. Candel, Combust. Flame 159, 2650 (2012)

    Article  Google Scholar 

  37. R. Sadanandan, P. Kutne, A. Steinberg, W. Meier, Flow Turbul. Combust. 89, 275 (2012)

    Article  Google Scholar 

  38. K. Harvey, J. Fluid Mech. 14, 585 (1962)

    Article  ADS  Google Scholar 

  39. T.B. Benjamin, J. Fluid Mech. 28, 65 (1967)

    Article  ADS  Google Scholar 

Download references

Funding

This research was supported by Major Research Plan (Grant 91641118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Yan, B., Chen, L. et al. Two-dimensional thermometry measurements in confined swirl flames using filtered Rayleigh scattering. Appl. Phys. B 127, 80 (2021). https://doi.org/10.1007/s00340-021-07615-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07615-8

Navigation