Skip to main content
Log in

Impact of the meso-PSi substrate on ZnO thin films deposited by spray pyrolysis technique for UV photodetectors

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

ZnO thin films were successfully deposited via spray pyrolysis technique over various substrates, including glass, silicon, and mesoporous silicon (PSi). The effect of substrate type on the surface morphological, structural, and electrical properties of ZnO thin film was investigated. Scanning Electron Microscopy confirms the morphology of the meso-PSi substrate and displays the morphologies of the deposited ZnO. The (ZnO/PSi) heterojunction shows a porous ZnO layer with a large surface area by comparison to other structures. The patterns of X-ray Diffraction exposed that the deposited ZnO films have a hexagonal wurtzite polycrystalline structure. Ultraviolet (UV) metal-semiconductor-metal photodetectors have been investigated. The fabricated (ZnO/PSi) UV photodetector showed much higher photocurrent than other structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. X. Yan, C. Yi, Y. Wang, W. Cao, D. Mao, Q. Ou, P. Shen, H. Wang, Separation Purif. Technol. 231, 115897 (2020)

    Article  Google Scholar 

  2. J. Liang, X. Zhao, J. Sun, L. Ren, R. Liao, L. Yang, W. Li, Ceram. Int. 46(10), 15076 (2020)

    Article  Google Scholar 

  3. C. Kumar, B.K. Kushwaha, A. Kumar, D.K. Jarwal, R.K. Upadhyay, A.P. Singh, S. Jit, IEEE Photon. Technol. Lett. 32(6), 337 (2020). https://doi.org/10.1109/LPT.2020.2974780

    Article  ADS  Google Scholar 

  4. E. de Lucas-Gil, J. Menendez, L. Pascual, J.F. Fernandez, F. Rubio-Marcos, Appl. Sci. 10(4), 1322 (2020)

    Article  Google Scholar 

  5. Q. Fan, D. Li, J. Li, C. Wang, J. Alloys Compd 829, 154483 (2020). https://doi.org/10.1016/j.jallcom.2020.154483

    Article  Google Scholar 

  6. H.C. Ong, A.X.E. Zhu, G.T. Du, Appl. Phys. Lett. 80(6), 941 (2002)

    Article  ADS  Google Scholar 

  7. J. Chu, S. Huang, D. Zhang, Z. Bian, X. Li, Z. Sun, X. Yin, Appl. Phys. A 95(3), 849 (2009). https://doi.org/10.1007/s00339-009-5084-7

    Article  ADS  Google Scholar 

  8. A.M. Mostafa, J. Mol. Struct. 1226, 129407 (2021)

    Article  Google Scholar 

  9. T.V.K. Karthik, A.G. Hernández, Y. Kudriavtsev, H. Gómez-Pozos, M.G. Ramírez-Cruz, L. Martínez-Ayala, A. Escobosa-Echvarria, J. Mater. Sci.: Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-02987-7

    Article  Google Scholar 

  10. M. Khammar, S. Guitouni, N. Attaf, M.S. Aida, A. Attaf, Ceram. Int. 43(13), 9919 (2017). https://doi.org/10.1016/j.ceramint.2017.04.179

    Article  Google Scholar 

  11. R. Ebrahimifard, H. Abdizadeh, M.R. Golobostanfard, J. Sol-Gel Sci. Technol. 93(1), 28 (2020). https://doi.org/10.1007/s10971-019-05157-2

    Article  Google Scholar 

  12. R. Pietruszka, B.S. Witkowski, E. Zielony, K. Gwozdz, E. Placzek-Popko, M. Godlewski, Solar Energy 155, 1282 (2017). https://doi.org/10.1016/j.solener.2017.07.071

    Article  ADS  Google Scholar 

  13. V. Kidalov, A. Dyadenchuk, Y. Bacherikov, A. Zhuk, T. Gorbaniuk, I. Rogozin, V. Kidalov, Turk. J. Phys. 44(1), 57 (2020)

    Article  Google Scholar 

  14. F.A. Harraz, Sens. Actuators B: Chem. 202, 897 (2014). https://doi.org/10.1016/j.snb.2014.06.048

    Article  Google Scholar 

  15. T.V.K. Karthik, L. Martinez, V. Agarwal, J. Alloys Compd. 731, 853 (2018). https://doi.org/10.1016/j.jallcom.2017.10.070

    Article  Google Scholar 

  16. L. Martínez, O. Ocampo, Y. Kumar, V. Agarwal, Nanoscale Res. Lett. 9(1), 437 (2014). https://doi.org/10.1186/1556-276X-9-437

    Article  ADS  Google Scholar 

  17. M.B. Bouzourâa, A.E. Naciri, A. Moadhen, H. Rinnert, M. Guendouz, Y. Battie, A. Chaillou, M.A. Zaïbi, M. Oueslati, Mater. Chem. Phys. 175, 233 (2016). https://doi.org/10.1016/j.matchemphys.2016.03.026

    Article  Google Scholar 

  18. V.S. Rana, J.K. Rajput, T.K. Pathak, L. Purohit, Appl. Phys. A 127(4), 1 (2021)

    Article  Google Scholar 

  19. A. Hernandez, M. Olvera, O. Pérez-Cortes, H. Gómez-Pozos, T. Karthik, J. Electron. Mater. 25, 1–9 (2021)

    Google Scholar 

  20. J. Luo, K. Zhang, M. Cheng, M. Gu, X. Sun, Chem. Eng. J. 380, 122625 (2020)

    Article  Google Scholar 

  21. N.L. Tarwal, V.V. Shinde, A.S. Kamble, P.R. Jadhav, D.S. Patil, V.B. Patil, P.S. Patil, Appl. Surf. Sci. 257(24), 10789 (2011). https://doi.org/10.1016/j.apsusc.2011.07.099

    Article  ADS  Google Scholar 

  22. N. Sadananda Kumar, K.V. Bangera, G.K. Shivakumar, Appl. Nanosci. 4(2), 209 (2014)

    Article  Google Scholar 

  23. K. Kihara, G. Donnay, The Canadian Mineralogist 23(4), 647 (1985). https://www.crystallography.net/cod/9004181.html

  24. D. Komaraiah, E. Radha, Y. Vijayakumar, J. Sivakumar, M.V.R. Reddy, R. Sayanna, Mod. Res. Catal. 5(4), 130 (2016). https://doi.org/10.4236/mrc.2016.54011

    Article  Google Scholar 

  25. C. Zegadi, K. Abdelkebir, D. Chaumont, M. Adnane, S. Hamzaoui, Adv. Mater. Phys. Chem. 4(5), 720 (2014). https://doi.org/10.4236/ampc.2014.45012

    Article  Google Scholar 

  26. G. Srinivasan, R.T. Rajendra Kumar, J. Kumar, J. Sol-Gel Sci. Technol. 43(2), 171 (2007)

    Article  Google Scholar 

  27. Y. Li, J. Wang, Y. Kong, J. Zhou, J. Wu, G. Wang, H. Bi, X. Wu, W. Qin, Q. Li, Sci. Rep. 6(1), 19187 (2016). https://doi.org/10.1038/srep19187

    Article  ADS  Google Scholar 

  28. T.I. Gorbanyuk, A.A. Evtukh, V.G. Litovchenko, V.S. Solnsev, E.M. Pakhlov, Thin Solid Films 495(1), 134 (2006). https://doi.org/10.1016/j.tsf.2005.08.188

    Article  ADS  Google Scholar 

  29. S. Muthukumaran, R. Gopalakrishnan, Opt. Mater. 34(11), 1946 (2012)

    Article  ADS  Google Scholar 

  30. D. Sharma, R. Jha, J. Alloys Compd 698, 532 (2017). https://doi.org/10.1016/j.jallcom.2016.12.227

    Article  Google Scholar 

  31. S. Kumar, S. Mukherjee, R. Kr, S. Singh, A.K. Ghosh. Chatterjee, J. Appl. Phys. 110(10), 103508 (2011)

    Article  ADS  Google Scholar 

  32. A.E. Pap, K. Kordás, G. Tóth, J. Levoska, A. Uusimäki, J. Vähäkangas, S. Leppävuori, T.F. George, Appl. Phys. Lett. 86(4), 041501 (2005). https://doi.org/10.1063/1.1853519

    Article  ADS  Google Scholar 

  33. M. Salem, Z.Y. Alami, B. Bessais, A. Chahboun, M. Gaidi, J. Nanopart. Res. 17(3), 137 (2015). https://doi.org/10.1007/s11051-015-2944-2

    Article  ADS  Google Scholar 

  34. M.B. Gili, R. Chu, M. Balela, J. Phys.: Conf. Ser. 1191, 012050 (2019). https://doi.org/10.1088/1742-6596/1191/1/012050

    Article  Google Scholar 

  35. R. Vinodkumar, K.J. Lethy, D. Beena, A.P. Detty, I. Navas, U.V. Nayar, V.P. Mahadevan Pillai, V. Ganesan, V.R. Reddy, Solar Energy Mater. Solar Cells 94(1), 68 (2010).

    Article  Google Scholar 

  36. J.R. Rani, V.P. Mahadevan Pillai, R.S. Ajimsha, M.K. Jayaraj, R.S. Jayasree, J. Appl. Phys. 100(1), 014302 (2006). https://doi.org/10.1063/1.2209432

    Article  ADS  Google Scholar 

  37. D.H. Zhang, Q.P. Wang, Z.Y. Xue, Appl. Surf. Sci. 207(1), 20 (2003). https://doi.org/10.1016/S0169-4332(02)01225-4

    Article  ADS  Google Scholar 

  38. V.P. Gupta, N.M. Ravindra, Phys. Status Solidi (b) 100(2), 715 (1980). https://doi.org/10.1002/pssb.2221000240

    Article  ADS  Google Scholar 

  39. H.S. Bolarinwa, M.U. Onuu, A.Y. Fasasi, S.O. Alayande, L.O. Animasahun, I.O. Abdulsalami, O.G. Fadodun, I.A. Egunjobi, J. Taibah Univ. Sci. 11(6), 1245 (2017). https://doi.org/10.1016/j.jtusci.2017.01.004

    Article  Google Scholar 

  40. G.K. Mani, J.B.B. Rayappan, Appl. Surf. Sci. 311, 405 (2014). https://doi.org/10.1016/j.apsusc.2014.05.075

    Article  ADS  Google Scholar 

  41. L.W. Ji, S.M. Peng, Y.K. Su, S.J. Young, C.Z. Wu, W.B. Cheng, Appl. Phys. Lett. 94(20), 203106 (2009). https://doi.org/10.1063/1.3141447

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the Thematic Research in Science and Technology Agency (ATRST) to finance the project and the CCLO technical platform of Institut FOTON for helping in the realization and characterization of the structures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdellah Rahmani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani, A., Remache, L., Guendouz, M. et al. Impact of the meso-PSi substrate on ZnO thin films deposited by spray pyrolysis technique for UV photodetectors. Appl. Phys. A 127, 396 (2021). https://doi.org/10.1007/s00339-021-04548-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04548-z

Keywords

Navigation