Skip to main content
Log in

Dielectric Function of a Spherical Metallic Nanoparticle

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The interaction of electromagnetic waves with a spherical metallic nanoparticle is studied in this work. Within the model of an infinite spherical potential well, taking into account the size dependence of the Fermi energy, a formula for the dielectric tensor is obtained and its diagonal components are calculated. The calculation results demonstrate a strong size and frequency dependencies of the real and imaginary parts of the dielectric function. Calculations were performed for Ag, Cu, and Al particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. R. Ruppin and H. Yatom, “Size and shape effects on the broadening of the plasma resonance absorption in metals,” Phys. Status Solidi B 74, 647–654 (1976).

    Article  Google Scholar 

  2. D. M. Wood and N. W. Ashcroft, “Quantum size effects in the optical properties of small metallic particles,” Phys. Rev. B 25, 6255–6274 (1982).

    Article  CAS  Google Scholar 

  3. U. Kreibig and L. Genzel, “Optical absorption of small metallic particles,” Surf. Sci. 156, 678–700 (1985).

    Article  CAS  Google Scholar 

  4. T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1988).

    Article  Google Scholar 

  5. P. M. Tomchuk and B. P. Tomchuk, “Optical absorption by small metallic particles,” J. Exp. Theor. Phys. 85, 360–369 (1997).

    Article  Google Scholar 

  6. R. A. Serota and B. Goodman, “Quantum absorption in small metal particles,” Mod. Phys. Lett. B 13, 969–976 (1999).

    Article  CAS  Google Scholar 

  7. F. A. Ivanyuk, “Dielectric function of metal clusters: Finite-size effects and the macroscopic limit,” Phys. Rev. B 77, 155425 (2008).

    Article  Google Scholar 

  8. A. A. Govyadinov, G. Y. Panasyuk, J. C. Schotland, and V. A. Markel, “Theoretical and numerical investigation of the size dependent optical effects in metal nanoparticles,” Phys. Rev. B 84,155461 (2011).

    Article  Google Scholar 

  9. M. Zapata-Herrera, A. S. Camacho, and H. Y. Ramírez, “Influence of the confinement potential on the size-dependent optical response of metallic nanometric particles,” Comput. Phys. Commun. 227, 1–8 (2018).

    Article  CAS  Google Scholar 

  10. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).

    Article  CAS  Google Scholar 

  11. K. F. MacDonald, Z. L. Sámson, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2009).

    Article  CAS  Google Scholar 

  12. R. B. Nielsen, M. D. Thoreson, W. Chen, A. Kristensen, J. M. Hvam, V. M. Shalaev, and A. Boltasseva, “Toward superlensing with metal–dielectric composites and multilayer,” Appl. Phys. B 100, 93–100 (2001).

  13. X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy,” Nanomedicine 2, 681–693 (2007).

    Article  CAS  Google Scholar 

  14. R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267, 1629–1632 (1995).

    Article  CAS  Google Scholar 

  15. R. P. Andres, J. D. Bielefeld, J. I. Henderson, D. B. Janes, V. R. Kolagunta, C. P. Kubiak, W. J. Mahoney, and R. G. Osifchin, “Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters,” Science 273, 1690–1693 (1996).

    Article  CAS  Google Scholar 

  16. V. I. Balykin and P. N. Melent’ev, “Optics and spectroscopy of a single plasmonic nanostructure,” Phys. Usp. 61, No. 2, 133–156 (2018).

    Article  CAS  Google Scholar 

  17. A. V. Korotun and A. A. Koval’, “Dielectric tensor of a metal nanowire with an elliptical cross section,” Phys. Met. Metallogr. 120, No.7, 621–625 (2019).

    Article  CAS  Google Scholar 

  18. A. Kawabata and R. Kubo, “Electronic properties of fine metallic particles. II. Plasma resonance absorption,” J. Phys. Soc. Jpn. 21, 1765–1772 (1966).

    Article  CAS  Google Scholar 

  19. W. C. Huang and J. T. Lue, “Quantum size effect on the optical properties of small metallic particles,” Phys. Rev. B 49, 17279–17285 (1994).

    Article  CAS  Google Scholar 

  20. L. Sander, “Quantum theory of perpendicular electrical conductivity in a thin metallic film,” J. Phys. Chem. Solids 29, 291–294 (1968).

    Article  CAS  Google Scholar 

  21. M. Cini and P. Ascarelli, “Quantum size effects in metal particles and thin films by an extended RPA,” J. Phys. F 4, 1998–2008 (1974).

    Article  CAS  Google Scholar 

  22. G. N. Blackman and D. A. Genov, “Bounds on quantum confinement effects in metal nanoparticles,” Phys. Rev. B 97, 115440 (2018).

    Article  Google Scholar 

  23. V. P. Kurbatsky and V. V. Pogosov, “Optical conductivity of metal nanofilms and nanowires: The rectangular-box model,” Phys. Rev. B 81, 155404 (2010).

    Article  Google Scholar 

  24. A. V. Korotun, “Size dependence of the Fermi energy of spherical metal nanocluster,” J. Nano-Electron. Phys. 7, No. 3, 03028 (2015).

    Google Scholar 

  25. N. W. Aschcroft and N. D. Mermin, Solid State Physics (Holt, Renehart, and Winston, New York, 1976), Vol. 1.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Korotun.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koval, A.A., Korotun, A.V. Dielectric Function of a Spherical Metallic Nanoparticle. Phys. Metals Metallogr. 122, 230–236 (2021). https://doi.org/10.1134/S0031918X21030108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X21030108

Keywords:

Navigation