Skip to main content
Log in

Bainitic Transformations in Titanium Alloys

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

A large number of factors have an effect on the features and conditions of bainitic (intermediate) transformations in titanium alloys, namely: the type of phase diagram, the position of the eutectoid temperature, the eutectoid composition, the temperature of the start of martensitic transformation, and the rate of diffusion processes. This review provides a detailed analysis of the changes in these factors depending on the position of alloying metals in the periodic table of elements and highlights their influence on the course of bainitic transformations. The main reactions that influence the processes related to bainitic transformations are analyzed, and the main schemes of the formation of bainitic (intermediate) structures in titanium alloys are given. The crystallographic features of bainitic structures are considered, and a classification of intermetallic compounds that form in titanium alloys during the formation of bainitic structures is described. The review provides experimental data related to the features of the formation of bainitic (intermediate) structures in a broad class of titanium alloys with alloying metals belonging to Groups 5-11 of the periodic table of elements (Ti–V, Ti–Nb, Ti–Ta, Ti–Cr, Ti–Mo, Ti–W, Ti–Mn, Ti–Re, Ti–Fe, Ti–Ru, Ti–Os, Ti–Rh, Ti‒Co, Ti–Ni, Ti–Pd, Ti–Cu, Ti–Ag, and Ti–Au alloys).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.
Fig. 29.
Fig. 30.
Fig. 31.
Fig. 32.
Fig. 33.
Fig. 34.
Fig. 35.
Fig. 36.

Similar content being viewed by others

REFERENCES

  1. G. V. Kurdjumov, L. M. Utevskii, and R. I. Entin, Transformations in Iron and Steel (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  2. J. W. Christian, The Theory of Transformation in Metals and Alloys (Pergamon, 1965).

    Google Scholar 

  3. R. F. Hehemann, K. R. Kinsman, and H. I. A. Aaronson, “Debate on the bainite reaction,” Metall. Trans. 3, No. 5, 1077–1094 (1972).

    Article  CAS  Google Scholar 

  4. M. Hillert, “Diffusion in growth of bainite,” Metall. Mater. Trans. A 25, No. 9, 1957–1966 (1994).

    Article  Google Scholar 

  5. G. Spanos, “The fine structure and formation mechanism of lower bainite,” Metall. Mater. Trans. A 25, No. 9, 1967–1980 (1994).

    Article  Google Scholar 

  6. V. M. Schastlivtsev, “New concepts of the nature of bainitic transformations in steels,” Metalloved. i Term. Obr. Met., No. 7, 24–29 (2005).

  7. G. I. Silman, V. V. Kamynin, and M. S. Polukhin, “Bainitic transformation in iron with stably graphitized snructure,” Met. Sci. Heat Treat. 49, Nos. 3–4, 204–208 (2007).

    Article  CAS  Google Scholar 

  8. H. J. Lee and H. I. Aaronson, “Eutectoid decomposition mechanisms in hypoeutectoid Ti–X alloys,” J. Mater. Sci. 23, 150–160 (1988).

    Article  CAS  Google Scholar 

  9. G. W. Franti, J. C. Williams, and H. I. Aaronson, “A survey eutectoid decomposition in ten Ti–X systems,” Metall. Trans. A 9, 1641–1649 (1978).

    Article  Google Scholar 

  10. A. V. Dobromyslov and N. I. Taluts, “Structure of quenched Ti–Ru alloys,” Phys. Met. Metallogr. 119, No. 3, 272–281 (2018).

    Article  CAS  Google Scholar 

  11. A. V. Dobromyslov and N. I. Taluts, “Structure of quenched alloys of the Ti–Pd system,” Phys. Met. Metallogr. 117, No. 7, 693–700 (2016).

    Article  CAS  Google Scholar 

  12. A. V. Dobromyslov and N. V. Kazantseva, “Phase transformation in the Ti–Cu system,” Phys. Met. Metallogr. 89, No. 5, 467–473 (2000).

    Google Scholar 

  13. A. V. Dobromyslov and N. I. Taluts, Structure of Zirconium and Its Alloys (UrO RAN, Ekaterinburg, 1997) [in Russian].

    Google Scholar 

  14. A. V. Dobromyslov and N. V. Kazantseva, “Influence of eutectoid decomposition on the structure of quenched zirconium alloys with metals of groups I, V–VIII of the Periodic table,” Fiz. Met. Metalloved. 75, 118–128 (1993).

    CAS  Google Scholar 

  15. A. V. Dobromyslov and N. V. Kazantseva, “Mechanism of bainitic transformation in zirconium-manganese alloys,” Fiz. Met. Metalloved. 83, No. 1, 132–139 (1997).

    CAS  Google Scholar 

  16. N. I. Taluts and A. V. Dobromyslov, “Features of bainitic transformation in Zr−Rh alloys, Materials structure,” Bull. Czech Slovak Crystallogr. Assoc. 6, No. 2, 120−121 (1999).

    Google Scholar 

  17. T. Y. Hsu (X. Zuyao), and Z. Xiaowang, “Thermodynamics of the bainitic transformation in a Cu–Zn alloys,” Metall. Mater. Trans. A 37, No. 11, 3095–3098 (1994).

    Google Scholar 

  18. Sh. Motomura, Y. Soejima, T. Miyoshi, and T. Hara, “In situ heating sem observation of the bainitic transformation process in Cu–17Al–11Mn (at %) alloys,” Microscopy (Oxford) 65, No. 2, 159–168 (2015).

    Article  CAS  Google Scholar 

  19. R. F. Mehl, Hardenability of Alloys Steels (ASM, Metals Park, 1933), pp. 1–58.

    Google Scholar 

  20. A. V. Dobromyslov and N. V. Kazantseva, “Influence of eutectoid decomposition on the structure of quenched zirconium alloys with metals of groups I, V–VIII of the Periodic Table,” Fiz. Met. Metalloved. 75, 118–128 (1993).

    CAS  Google Scholar 

  21. G. I. Nosova, Phase Transformation in Titanium Alloys (Metallurgiya, Moscow, 1964) [in Russian].

    Google Scholar 

  22. B. A. Kolachev, Physical Metal Science of Ti (Metallurgiya, Moscow, 1976) [in Russian].

    Google Scholar 

  23. U. Zwicker, Titan und Titanlegierungen (Springer, Berlin, 1974).

    Book  Google Scholar 

  24. A. V. Dobromyslov, “Effect of d metals on the polymorphous and (mono) eutectoid transformation temperatures of binary titanium, zirconium, and hafnium alloys,” Phys. Met. Metallogr. 121, No. 5, 466–470 (2020).

    Article  CAS  Google Scholar 

  25. M. J. McQuillan, Phase Transformations in Titanium and Its Alloys, Met.Rev, 8, 41–104 (1963).

    Book  Google Scholar 

  26. W. A. Baeslack and W. A. Mullins, “Phase transformations in a Ti–2 wt. Cr alloy on cooling,” J. Mater. Sci. Lett. 2, 715–718 (1983).

    Article  CAS  Google Scholar 

  27. A. V. Dobromyslov, “Phase Transformation in binary titanium-base alloys with metals of groups I, IV–VIII of the Periodic Table,” 9 th World Conference on Titanium (Saint-Petersburg, 1999), Vol. 1, 97–106.

  28. A. V. Dobromyslov and V. A. Elkin, “Martensitic transformation and metastable β-phase in binary titanium. alloys with d-metals of 4–6 periods,” Scr. Mater. 44, 905–910 (2001).

    Article  CAS  Google Scholar 

  29. H. T. Aaronson, G. W. Franti, and M. R. Plichta, “The bainite and massive transformation in Ti–X eutectoid systems,” Interim Rep, Mater. Sci. 75, 1–15 (1976).

    Google Scholar 

  30. L. E. Popova and A. A. Popov, Diagrams of Austenite Transformation in Steels and Beta-Solution in Titanium Alloys ((Metallurgiya, Moscow, 1991).

    Google Scholar 

  31. D. A. Mirzaev, V. G. Ul’yanov, M. M. Shteinberg, L. A. Ashikhmina, and T. N. Ul’yanova, “ Electron microscopic study of the structure of titanium quenched at rates from 100 to 5 × 105 deg./s,” Fiz. Met. Metalloved. 57, 1160–1165 (1984).

    Google Scholar 

  32. M. Hillert, “Termodinamics of the massive transformation,” Metall. Trans. A 15, 411–419 (1984).

    Article  Google Scholar 

  33. Yu. M. Lakhtin, Fundamentals of Metal Science (Metallurgiya, Moscow, 1988) [in Russian].

    Google Scholar 

  34. T. B. Massalski, “Massive transformation,” Mater. Sci. Eng. 25, 119–125 (1976).

    Article  CAS  Google Scholar 

  35. H. I. Aaronson, “Mechanisms massive transformation,” Metall. Mat.Trans. A 33, 2285–2296 (2002).

    Article  Google Scholar 

  36. H. K. D. H. Bhadeshia and J. W. Christian, “Bainite in steels,” Metall. Trans. A 21, 767–797 (1990).

    Article  Google Scholar 

  37. J. C. Williams, R. Taggart, and D. H. Polonis, “The morphology and substructure of Ti–Cu martensite,” Metall. Trans. 1, 2265–2270 (1970).

    Article  CAS  Google Scholar 

  38. A. V. Dobromyslov and N. I. Taluts, “ Electron microscopic study of the structure of Zr−Mo alloys,” Fiz. Met. Metalloved., No. 12, 72−80 (1990).

  39. A. V. Dobromyslov and N. I. Taluts, “Influence of transition elements of groups V and VI on the structure of quenched zirconium,” Fiz. Met. Metalloved., No. 8, 163–170 (1991).

  40. A. V. Dobromyslov, “Influence of the transition metals on structure and mechanical properties of titanium-base alloys,” In Advanced Light Alloys and Composites, Ed. by R. Chiach (Kluver Academic Publishers, 1998), pp. 165–174.

    Google Scholar 

  41. I. G. Brodova, A. V. Dobromyslov, N. I. Noskova, V. V. Popov, V. G. Pushin, V. V. Sagaradze, B. K. Sokolov, and L. P. Tarabaev, New Promising Materials and New Technologies. Collective monograph, Ed. by N. I. Noscova (UrO RAN, Yekaterinburg, 2001) [in Russian].

    Google Scholar 

  42. K. Majchrowicz1, Z. Pakieła, D. Moszczyn’ska, T. Kurzynowski, and E. Chlebus, “Hot Corrosion of Ti–Re alloys fabricated by selective laser melting,” Oxid. Met. 90, 83–96 (2018).

  43. A. V. Dobromyslov and V. A. Elkin, “β → α” and β → ω transformations in Ti–Os alloys,” Metall. Mat. Trans. A 30, 231–233 (1999).

    Article  Google Scholar 

  44. A. V. Dobromyslov and N. I. Taluts, “Structure of quenched Ti–Ru alloys,” Phys. Met. Metallogr. 119, No. 3, 272–281 (2018).

    Article  CAS  Google Scholar 

  45. T. A. Bhaskaran, R. V. Krishnan, and S. Ranganathan, “On the decomposition of β-phase in some rapidly quenched titanium-eutectoid alloys,” Metall. Mater. Trans. A 26, 1365–1367 (1995).

    Article  Google Scholar 

  46. A. V. Dobromyslov and N. I. Taluts, “Structure of quenched alloys of the Ti–Pd system,” Phys. Met. Metallogr. 117, No. 7, 693–700 (2016).

    Article  CAS  Google Scholar 

  47. J. C. Williams, R. Taggarg, and D. H. Polonis, “The morphology and substructure of Ti–Cu martensite,” Metall. Trans. 1, 2265–2270 (1970).

    Article  CAS  Google Scholar 

  48. A. Zangvil, S. Yamamoto, and Y. Murakami, “Morphology and Substructure of Ti–Cu Martensite and its Aged Martensite,” Trans. JIM 17, 575–581 (1976).

    Article  CAS  Google Scholar 

  49. A. V. Dobromyslov and N. V. Kazantseva, “Phase transformations in the Ti–Cu system,” Phys. Met. Metallogr. 89, 467–473 (2000).

    Google Scholar 

  50. M. R. Plichta, J. C. Williams, and H. I. Aaronson, “On the Existence of the β → αm Transformation in the Alloy Systems Ti–Ag, Ti–Au, and Ti–Si,” Metall. Trans. A 8, 1885–1892 (1977).

    Article  Google Scholar 

  51. M. Takahashi, M. Kikuchi, and O. Okuno, “Mechanical Properties and Grindability of Experimental Ti–Au Alloys,” Dental Mater. J. 23, No. 2, 203–210 (2004).

    Article  Google Scholar 

  52. A. V. Dobromyslov and N. V. Kazantseva, “The features of the formation of the non-equilibrium phases in the titanium-copper alloys,” 9th World Conference on Titanium (St. Petersburg, 1999), Vol. 1, pp. 247–252.

  53. M. Enomoto and H. Tsubakino, “Morphology and thermodynamic of bainitic transfortmation in ferrous and non-ferrous alloys,” Mater. Trans., JIM 32, No. 8, 642–657 (1991).

    CAS  Google Scholar 

  54. M. Enomoto and M. Fujita, “Analysis of the composition of α plates isothermally formed in titanium binary alloys,” Metall. Trans. A 21, 1547–1556 (1990).

    Article  Google Scholar 

  55. H. M. Flower, R. Davis, and D. R. F. West, “Martensite formation in alloys of titanium containing β-stabilizing elements, Titanium and titanium alloys,” Proceeding of conference, Eds. by Williams et al. (Springer, New York, 1982), pp. 1703–1715.

  56. J. B. Newkirk and A. H. Geisler, “Crystallographic aspects of the beta to alpha transformation in titanium,” Acta Metall. 1, 370–374 (1953).

    Article  Google Scholar 

  57. C. J. McHargue, “The crystallography of the titanium transformation,” Acta Crystallogr. 6, 529–530 (1953).

    Article  CAS  Google Scholar 

  58. A. J. Williams, R. W. Cahn, and C. S. Barrett, “The crystallography of the β-α transformation in titanium,” Acta Metall. 2, 117–128 (1954).

    Article  CAS  Google Scholar 

  59. A. V. Dobromyslov and N. I. Taluts, “Crystallography and structure of lath martensite of the hexagonal α‑phase in zirconium,” Fiz. Met. Metalloved. 67, 1138–1147 (1989).

    CAS  Google Scholar 

  60. Y. C. Liu and H. Margolin, “Martensite habit plane in quenched Ti–Mn alloys,” J. Met. 5, 667–670 (1953).

    CAS  Google Scholar 

  61. Y. C. Liu, “Martensitic transformation in binary titanium alloys,” Trans. AIME 206, 1036–1040 (1956).

    Google Scholar 

  62. P. Gaunt and J. W. Christian, “The crystallography of the β–α transformation in zirconium and two titanium-molybdenum alloys,” Acta Met. 7, 534–543 (1959).

    Article  CAS  Google Scholar 

  63. M. E. Drits, Properties of Elements (Metallurgiya, Moscow, 1985) [in Russian].

    Google Scholar 

  64. Phase Diagrams of Binary Metallic Systems, Ed. by N. P. Lyakishev (Khimiya, Moscow, 2012) [in Russian].

    Google Scholar 

  65. G. P. Luchinskii, Chemistry of Titanium (Izd. Khimiya, Moscow, 1971) [in Russian].

    Google Scholar 

  66. G. Lutjering and S. Weismann, “Mechanical properties and structure of age-hardened Ti–Cu alloys,” Metall. Trans. 1, 1641–1649 (1970).

    Article  Google Scholar 

  67. P. Mukhopadhyay, S. K. Menon, S. Banerjee, and R. S. Krishnan, “Active eutectoid decomposition in a near-eutectoid zirconium-copper alloy,” Metall. Trans. A 10, 1071–1084 (1979).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Dobromyslov.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dobromyslov, A.V. Bainitic Transformations in Titanium Alloys. Phys. Metals Metallogr. 122, 237–265 (2021). https://doi.org/10.1134/S0031918X21030042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X21030042

Keywords:

Navigation