Skip to main content
Log in

Program of Searches with the CMS Detector for Signals from Multidimensional Low-Energy Gravity at the Large Hadron Collider

  • ELEMENTARY PARTICLES AND FIELDS/Experiment
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

This article, presented on behalf of the Compact Muon Solenoid (CMS) Collaboration, gives a generalizing survey of the results of the CMS experiment that concern searches for Kaluza–Klein excited states of the graviton (KK modes) and for microscopic multidimensional black holes, quantum black holes, and string balls within multidimensional low-energy gravity. The present analysis relies on data obtained during the first (2010–2012) and second (2015–2018) stages of operation of the Large Hadron Collider (LHC) in proton–proton collisions at the center-of-mass energies of 7, 8, and 13 TeV. The results of experimental searches are interpreted in terms of constraints on the space of parameters of the theoretical models being studied. Also, further prospects for the HL-LHC mode and for the possible Future Circular Collider (FCC) are discussed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B 429, 263 (1998);

    Article  ADS  Google Scholar 

  2. Phys. Rev. D 59, 086004 (1999).

  3. L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999);

    Article  ADS  MathSciNet  Google Scholar 

  4. Phys. Rev. Lett. 83, 4690 (1999).

  5. G. Giudice, R. Rattazzi, and J. Wells, Nucl. Phys. B 544, 3 (1999);

    Article  ADS  Google Scholar 

  6. T. Han, J. D. Lykken, and R.-J. Zhang, Phys. Rev. D 59, 105006 (1999);

    Article  ADS  MathSciNet  Google Scholar 

  7. J. L. Hewett, Phys. Rev. Lett. 82, 4765 (1999);

    Article  ADS  Google Scholar 

  8. H. Davoudiasl, J. L. Hewett, and T. G. Rizzo, Phys. Rev. Lett. 84, 2080 (2000).

    Article  ADS  Google Scholar 

  9. M. V. Savina and S. V. Shmatov, in Essays on Modern Particle Physics (OIYaI, Dubna, 2020), p. 133 [in Russian].

  10. CMS Collab., J. Instrum. 3, S08004 (2008).

    Google Scholar 

  11. I. A. Golutvin, V. V. Palchik, M. V. Savina, and S. V. Shmatov, Phys. At. Nucl. 70, 56 (2007).

    Article  Google Scholar 

  12. A. B. Zarubin, A. V. Lanev, M. V. Savina, and S. V. Shmatov, in Essays on Modern Particle Physics (OIYaI, Dubna, 2020), p. 290 [in Russian].

  13. CMS Collab., Phys. Rev. D 98, 092001 (2018);

    Article  ADS  Google Scholar 

  14. Phys. Lett. B 767, 147 (2017).

  15. CMS Collab., CMS-EXO-19-012; J. High Energy Phys. (submitted); arXiv:1911.03947; J. High Energy Phys. 1808, 130 (2018).

    ADS  Google Scholar 

  16. CMS Collab., J. High Energy Phys. 1904, 114 (2019); 1806, 120 (2018).

  17. CMS Collab., Eur. Phys. J. C 78, 789 (2018).

    Article  ADS  Google Scholar 

  18. CMS Collab., Phys. Rev. D 97, 092005 (2018);

    Article  ADS  Google Scholar 

  19. J. High Energy Phys. 1902, 074 (2019).

  20. K. S. Thorne, Black Holes and Time Warps: Einstein’s Outrageous Legacy (Picador, London, 1994).

    MATH  Google Scholar 

  21. T. Banks and W. Fischler, hep-th/9906038; S. B. Giddings and S. Thomas, Phys. Rev. D 65, 056010 (2002);

    Article  Google Scholar 

  22. S. Dimopoulos and G. Landsberg, Phys. Rev. Lett. 87, 161602 (2001).

    Article  ADS  Google Scholar 

  23. R. C. Myers and M. J. Perry, Ann. Phys. 172, 304 (1986).

    Article  ADS  Google Scholar 

  24. A. Chamblin, S. W. Hawking, and H. S. Reall, Phys. Rev. D 61, 065007 (2000);

    Article  ADS  MathSciNet  Google Scholar 

  25. S. B. Giddings and E. Katz, J. Math. Phys. 42, 3082 (2001);

    Article  ADS  MathSciNet  Google Scholar 

  26. T. G. Rizzo, J. High Energy Phys. 0501, 028 (2005).

  27. P. Meade and L. Randall, J. High Energy Phys. 0805, 003 (2008);

  28. X. Calmet, Wei Gong, and S. D. H. Hsu, Phys. Lett. B 668, 20 (2008);

    Article  ADS  Google Scholar 

  29. D. M. Gingrich, J. Phys. G: Nucl. Part. Phys. 37, 105008 (2010).

    Article  ADS  Google Scholar 

  30. X. Calmet, S. D. H. Hsu, and D. Reeb, Phys. Rev. D 81, 035007 (2010).

    Article  ADS  Google Scholar 

  31. G. Dvali, G. Gabadadze, M. Kolanovic, and F. Nitti, Phys. Rev. D 65, 024031 (2002);

    Article  ADS  MathSciNet  Google Scholar 

  32. G. Dvali, Fortsch. Phys. 58, 528 (2010);

    Article  ADS  Google Scholar 

  33. G. Dvali and M. Redi, Phys. Rev. D 77, 045027 (2008).

    Article  ADS  Google Scholar 

  34. S. Dimopoulos and R. Emparan, Phys. Lett. B 526, 393 (2002);

    Article  ADS  MathSciNet  Google Scholar 

  35. D. M. Gingrich and K. Martell, Phys. Rev. D 78, 115009 (2008).

    Article  ADS  Google Scholar 

  36. L. Susskind, hep-th/9309145; G. T. Horowitz and J. Polchinski, Phys. Rev. D 55, 6189 (1997).

    Article  MathSciNet  Google Scholar 

  37. J. A. Frost, J. R. Gaunt, M. O. P. Sampaio, M. Casals, S. R. Dolan, M. A. Parker, and B. R. Webber, J. High Energy Phys. 0910, 014 (2009).

  38. D.-C. Dai, G. Starkman, D. Stojkovic, C. Issever, E. Rizvi, and J. Tseng, Rev. D 77, 076007 (2008).

    Article  Google Scholar 

  39. D. M. Gingrich, Comput. Phys. Commun. 181, 1917 (2010).

    Article  ADS  Google Scholar 

  40. CMS Collab., Phys. Lett. B 697, 434 (2011);

    Article  ADS  Google Scholar 

  41. J. High Energy Phys. 1204, 061 (2012); 1307, 178 (2013);

  42. Phys. Lett. B 774, 279 (2017);

  43. Phys. Lett. B 774, 279 (2017); J. High Energy Phys. 1811, 042 (2018).

  44. CMS Collab., J. High Energy Phys. 1804, 073 (2018);

  45. Eur. Phys. J. C 76, 317 (2016).

  46. M. V. Savina, Phys. At. Nucl. 74, 496 (2011); 76, 1090 (2013); 78, 532 (2015); 74, 532 (2011). Physics on LHC: Proceedings of the Joint Seminar RDMS CMS (OIYaI, Dubna, 2016), No. 4, p. 131 [in Russian].

  47. L. A. Anchordoqui, J. L. Feng, H. Goldberg, and A. D. Shapere, Phys. Lett. B 594, 363 (2004);

    Article  ADS  Google Scholar 

  48. L. Anchordoqui, T. Han, D. Hooper, and S. Sarkar, Astropart. Phys. 25, 14 (2006);

    Article  ADS  Google Scholar 

  49. X. Calmet, L. I. Caramete, and O. Micu, J. High Energy Phys. 1211, 104 (2012).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to all participants of the group of black-hole searches at the Exotica Department of the CMS experiment and to S.V. Shmatov for fruitful joint work. Thanks are also due to O.V. Teryaev for stimulating questions and for discussions on the theoretical aspects of the models considered in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Savina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savina, M.V., Seitova, D. Program of Searches with the CMS Detector for Signals from Multidimensional Low-Energy Gravity at the Large Hadron Collider. Phys. Atom. Nuclei 84, 190–196 (2021). https://doi.org/10.1134/S1063778821010191

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778821010191

Navigation