Skip to main content
Log in

Kinetic and structural parameters governing Fic-mediated adenylylation/AMPylation of the Hsp70 chaperone, BiP/GRP78

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Fic (filamentation induced by cAMP) proteins regulate diverse cell signaling events by post-translationally modifying their protein targets, predominantly by the addition of an AMP (adenosine monophosphate). This modification is called Fic-mediated adenylylation or AMPylation. We previously reported that the human Fic protein, HYPE/FicD, is a novel regulator of the unfolded protein response (UPR) that maintains homeostasis in the endoplasmic reticulum (ER) in response to stress from misfolded proteins. Specifically, HYPE regulates UPR by adenylylating the ER chaperone, BiP/GRP78, which serves as a sentinel for UPR activation. Maintaining ER homeostasis is critical for determining cell fate, thus highlighting the importance of the HYPE-BiP interaction. Here, we study the kinetic and structural parameters that determine the HYPE-BiP interaction. By measuring the binding and kinetic efficiencies of HYPE in its activated (Adenylylation-competent) and wild type (de-AMPylation-competent) forms for BiP in its wild type and ATP-bound conformations, we determine that HYPE displays a nearly identical preference for the wild type and ATP-bound forms of BiP in vitro and preferentially de-AMPylates the wild type form of adenylylated BiP. We also show that AMPylation at BiP’s Thr366 versus Thr518 sites differentially affect its ATPase activity, and that HYPE does not adenylylate UPR accessory proteins like J-protein ERdJ6. Using molecular docking models, we explain how HYPE is able to adenylylate Thr366 and Thr518 sites in vitro. While a physiological role for AMPylation at both the Thr366 and Thr518 sites has been reported, our molecular docking model supports Thr518 as the structurally preferred modification site. This is the first such analysis of the HYPE-BiP interaction and offers critical insights into substrate specificity and target recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Fic:

filamentation induced by cAMP

AMP:

adenosine monophosphate

HYPE:

Huntingtin yeast interacting protein E

UPR:

unfolded protein response

ER:

endoplasmic reticulum

GS:

glutamine synthetase

GS-ATase:

glutamine synthetase adenylyltranferase

BiP:

binding immunoglobulin protein

NBD:

nucleotide binding domain

SBD:

substrate binding domain

References

  • Allan RK, Ratajczak T (2011) Versatile TPR domains accommodate different modes of target protein recognition and function. Cell Stress Chaperones 16:353–367

    Article  CAS  PubMed  Google Scholar 

  • Amin-Wetzel N, Saunders RA, Kamphius MJ, Rato C, Preissler S, Harding HP, Ron D (2017) Cell 171:1625–1637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broncel M, Serwa RA, Bunney TD, Katan M, Tate EW (2016) Global Profiling of Huntingtin-associated protein E (HYPE)-Mediated AMPylation through a Chemical Proteomic Approach. Mol Cell Proteomics 15(2):715–725. https://doi.org/10.1074/mcp.O115.054429

    Article  CAS  PubMed  Google Scholar 

  • Bunney TD, Cole AR, Broncel M, Esposito D, Tate EW, Katan M (2014) Crystal structure of the human, FIC-domain containing protein HYPE and implications for its functions. Structure 22:1831–1843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casey AK, Orth K (2017) Enzymes involved in AMPylation and deAMPylation. Chem Rev 118:1199–1215

    Article  PubMed  PubMed Central  Google Scholar 

  • Casey AK, Moehlman AT, Zhang J, Servage KA, Kramer H, Orth K (2017) Fic-mediated deAMPylation is not dependent on homodimerization and rescues toxic AMPylation in flies. J Biol Chem 292:21193–21204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castro-Roa D, Garcia-Pino A, De Gieter S, van Nuland NAJ, Loris R, Zenkin N (2013) The Fic protein Doc uses an inverted substrate to phosphorylate and inactivate EF-Tu. Nat Chem Biol 9:811–817

    Article  CAS  PubMed  Google Scholar 

  • Chambers JE, Petrova K, Tomba G, Vendruscolo M, Ron D (2012) ADP ribosylation adapts an ER chaperone response to short-term fluctuations in unfolded protein load. J Cell Biol 198:371–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruz JW, Rothenbacher FP, Maehigashi T, Lane WS, Dunham CM, Woychik NA (2014) Doc toxin is a kinase that inactivates elongation factor Tu. J Biol Chem 289:7788–7798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dietz N, Huber M, Sorg I, Goepfert A, Harms A, Schirmer T, Dehio C (2021) Structural basis for selective AMPylation of Rac-subfamily GTPases by Bartonella effector protein 1 (Bep1). Proc Natl Acad Sci U S A 118:12. https://doi.org/10.1073/pnas.2023245118

    Article  CAS  Google Scholar 

  • Engel P, Goepfert A, Stanger FV, Harms A, Schmidt A, Schirmer T, Dehio C (2012) Adenylylation control by intra- or intermolecular active-site obstruction in Fic proteins. Nature 482:107–U138

    Article  CAS  PubMed  Google Scholar 

  • Faber PW, Barnes GT, Srinidhi J, Chen JM, Gusella JF, MacDonald ME (1998) Huntingtin interacts with a family of WW domain proteins. Hum Mol Genet 7:1463–1474

    Article  CAS  PubMed  Google Scholar 

  • Feng F, Yang F, Rong W, Wu X, Zhang J, Chen S, He C, Zhou J-M (2012) A Xanthomonas uridine 5'-monophosphate transferase inhibits plant immune kinases. Nature 485:114–U149

    Article  CAS  PubMed  Google Scholar 

  • Haas IG (1994) BIP (GRP78), An essential Hsp70 resident protein in the endoplasmic-reticulum. Experientia 50:1012–1020

    Article  CAS  PubMed  Google Scholar 

  • Ham H, Woolery AR, Tracy C, Stenesen D, Kraemer H, Orth K (2014) Unfolded protein response-regulated Drosophila Fic (dFic) protein reversibly AMPylates BiP Chaperone during endoplasmic reticulum homeostasis. J Biol Chem 289:36059–36069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendershot LM, Ting J, Lee AS (1988) Identity of the immunoglobulin heavy-chain-binding protein with the 78,000-dalton glucose-regulated protein and the role of posttranslational modifications in its binding function. Mol Cell Biol 8:4250–4256

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kinch LN, Yarbrough ML, Orth K, Grishin NV (2009) Fido, a Novel AMPylation Domain Common to Fic, Doc, and AvrB. PLoS One 4:e5818

    Article  PubMed  PubMed Central  Google Scholar 

  • Kingdon HS, Shapiro BM, Stadtman ER (1967) Regulation of glutamine synthetase.8. Atp - glutamine synthetase adenylyltransferase an enzyme that catalyzes alterations in regulatory properties of glutamine synthetase. Proc Natl Acad Sci U S A 58:1703–1710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattoo S, Durrant E, Chen MJ, Xiao J, Lazar CS, Manning G, Dixon JE, Worby CA (2011) Comparative analysis of Histophilus somni immunoglobulin-binding protein A (IbpA) with other Fic domain-containing enzymes reveals differences in substrate and nucleotide specificities. J Biol Chem 286:32834–32842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moehlman AT, Casey AK, Servage K, Orth K, Kramer H (2018) Adaptation to constant light requires Fic-mediated AMPylation of BiP to protect against reversible photoreceptor degeneration. ELife 7:e38752

    Article  PubMed  PubMed Central  Google Scholar 

  • Mukherjee S, Liu X, Arasaki K, McDonough J, Galan JE, Roy CR (2011) Modulation of Rab GTPase function by a protein phosphocholine transferase. Nature 477:103–U122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikita P, Truman C, A.W., and Truttmann, M.C. (2020) Post-translational modifications of Hsp70 family proteins: expanding the chaperone code. J Biol Chem 295(31):10689–10708

    Article  Google Scholar 

  • Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, Brunak S, Mann M (2010) Quantitative Phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3:ra3

    Article  PubMed  Google Scholar 

  • Perera LA, Rato C, Yan Y, Neidhardt L, McLaughlin SH, Read RJ, Preissler S, Ron D (2019) An oligomeric state-dependent switch in the ER enzyme FICD regulates AMPylation and deAMPylation of BiP. EMBO J 38(21):e102177. https://doi.org/10.15252/embj.2019102177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterson LX, Kim H, Esquivel-Rodriguez J, Roy A, Han XS, Shin WH, Zhang J, Terashi G, Lee M, Kihara D (2017a) Human and server docking prediction for CAPRI round 30-35 using LZerD with combined scoring functions. Proteins-Structure Function and Bioinformatics 85:513–527

    Article  CAS  Google Scholar 

  • Peterson L, Jamroz M, Kolinski A, Kihara D (2017b) Predicting real-valued protein residue fluctuation using FlexPred. in Prediction of Protein Secondary Structure (Zhou, Y., Kloczkowski, A., Faraggi, E., and Yang, Y. eds.) 175-186

  • Preissler S, Rato C, Chen R, Antrobus R, Ding S, Fearnley IM, Ron D (2015) AMPylation matches BiP activity to client protein load in the endoplasmic reticulum. Elife 4

  • Preissler S, Rohland L, Yan Y, Chen R, Read RJ, Ron D (2017a) AMPylation targets the rate-limiting step of BiP's ATPase cycle for its functional activation. ELife 6:e29428

    Article  PubMed  PubMed Central  Google Scholar 

  • Preissler S, Rato C, Perera LA, Saudek V, Ron D (2017b) FICD acts bifunctionally to AMPylate and de-AMPylate the endoplasmic reticulum chaperone BiP. Nat Struct Mol Biol 24:23–29

    Article  CAS  PubMed  Google Scholar 

  • Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529

    Article  CAS  PubMed  Google Scholar 

  • Sanyal A, Chen AJ, Nakayasu ES, Lazar CS, Zbornik EA, Worby CA, Koller A, Mattoo S (2015) A Novel Link between Fic (Filamentation Induced by cAMP)-mediated Adenylylation/AMPylation and the Unfolded Protein Response. J Biol Chem 290:8482–8499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sengupta R, Poderycki MJ, Mattoo S (2019) CryoAPEX - an electron tomography tool for subcellular localization of membrane proteins. J Cell Sci 132(6):jcs222315. https://doi.org/10.1242/jcs.222315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shapiro BM, Kingdon HS, Stadtman ER (1967) Regulation Of Glutamine Synthetase .7. Adenylyl glutamine synthetase - a new form of enzyme with altered regulatory and kinetic properties. Proc Natl Acad Sci U S A 58:642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sreelatha A, Yee SS, Lopez VA, Park BC, Kinch LN, Pilch S, Servage KA, Zhang J, Jiou J, Karasiewicz-Urbańska M, Łobocka M, Grishin NV, Orth K, Kucharczyk R, Pawłowski K, Tomchick DR, Tagliabracci VS (2018) Protein AMPylation by an evolutionarily conserves pseudokinase. Cell 175:809–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan Y, Arnold RJ, Luo Z-Q (2011) Legionella pneumophila regulates the small GTPase Rab1 activity by reversible phosphorylcholination. Proc Natl Acad Sci U S A 108:21212–21217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Truttmann MC, Cruz VE, Guo XZ, Engert C, Schwartz TU, Ploegh HL (2016) The Caenorhabditis elegans protein FIC-1 is an AMPylase that covalently modifies heat-shock 70 family proteins, translation elongation factors and histones. PLoS Genet 12:e1006023

    Article  PubMed  PubMed Central  Google Scholar 

  • Venkatraman V, Yang YFD, Sael L, Kihara D (2009a) Protein-protein docking using region-based 3D Zernike descriptors. Bmc Bioinformatics 10

  • Venkatraman V, Sael L, Kihara D (2009b) Potential for protein surface shape analysis using spherical harmonics and 3D Zernike descriptors. Cell Biochem Biophys 54:23–32

    Article  CAS  PubMed  Google Scholar 

  • Worby CA, Mattoo S, Kruger RP, Corbeil LB, Koller A, Mendez JC, Zekarias B, Lazar C, Dixon JE (2009) The Fic domain: regulation of cell signaling by adenylylation. Mol Cell 34:93–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S, Hong L, Wang Y, Yu J, Yang J, Yang J, Zhang H, Perrett S (2020) Kinetics of the conformational cycle of Hsp70 reveals the importance of the dynamic and heterogeneous nature of Hsp70 for its function. Proc Natl Acad Sci U S A 117(14):7814–7823. https://doi.org/10.1073/pnas.1914376117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao J, Worby CA, Mattoo S, Sankaran B, Dixon JE (2010) Structural basis of Fic-mediated adenylylation. Nat Struct Mol Biol 17:1004–U1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Nune M, Zong YN, Zhou L, Liu QL (2015) Close and allosteric opening of the polypeptide-binding site in a human Hsp70 chaperone BiP. Structure 23:2191–2203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yarbrough ML, Li Y, Kinch LN, Grishin NV, Ball HL, Orth K (2009) AMPylation of Rho GTPases by Vibrio VopS disrupts effector binding and downstream signaling. Science 323:269–272

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Clint Chapple for advice on the design of kinetic experiments. We also thank the Purdue University office of Radiological and Environmental Management (REM) and Dr. Nicholas Carpita for access to the Liquid Scintillation Counter. Wild type HYPEΔ102/pSMT3 was a gift from Dr. Junyu Xiao and ERdJ6/pGEX-4T1 was kindly provided by Dr. David Ron. We also thank Dr. Linda Hendershot for additional J protein constructs and helpful discussions. Finally, we are grateful to members of the Mattoo lab for their helpful discussions.

Funding

This work was funded in part by the National Institute of General Medical Sciences of the National Institute of Health (R01GM10092), an Indiana Clinical and Translational Research Grant (CTSI-106564), and a Purdue Institute for Inflammation, Immunology, and Infectious Disease Core Start Grant (PI4D-209263) to SM; the National Institute of General Medical Sciences of the National Institutes of Health (R01GM123055) and the National Science Foundation (IOS1127027, DMS1614777) to DK; and grants from the Purdue Research Foundation (PRF-209104) and the Cancer Prevention Internship Program to AS.

Author information

Authors and Affiliations

Authors

Contributions

S.M. and A.S. conceived and designed the study. A.S., E.A.Z., B.G.W., and C.C. conducted the experiments. J.M. trained and provided advice on the BLI experiments. D.K. supervised the molecular docking studies. S.M. supervised the overall study. S.M. and A.S. wrote the manuscript. All authors revised and agreed to the final version of the manuscript.

Corresponding author

Correspondence to Seema Mattoo.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanyal, A., Zbornik, E.A., Watson, B.G. et al. Kinetic and structural parameters governing Fic-mediated adenylylation/AMPylation of the Hsp70 chaperone, BiP/GRP78. Cell Stress and Chaperones 26, 639–656 (2021). https://doi.org/10.1007/s12192-021-01208-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-021-01208-2

Keywords

Navigation