Skip to main content
Log in

Microstructure Evaluation and Mechanical Properties of Thixoformed Ai–5.7Si–2Cu–0.3Mg Aluminum Alloys

  • Technical Update
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

Al–5.7Si–2Cu–0.3Mg alloy was subjected to a thixoforming process. The impact behaviour of the thixoforming process on microstructure characterisation and mechanical properties was investigated. A cooling slope (CS) technique was applied here to get thixoforming feedstock material at three different pouring temperatures of 640 °C, 650 °C and 660 °C, plate lengths 300 mm, 400 mm and 500 mm and constant CS angle 60°. Some samples of thixoformed were treated using T6 heat treatment. These samples were characterised via optical microscopy, scanning electron microscope, energy dispersive spectrometer and X-ray diffraction investigations, tensile and hardness tests. Consequently, the optimum conditions of CS casting process were 650 °C pouring temperature and 400mm plate length. The thixoformed alloys observed fine globular α-Al phase microstructure surrounded by uniformly distributed Si particle, minimum of porosity and refined fragmented intermetallic phase. The hardness of the thixoformed-T6 sample was roughly twice as much as-cast sample. The tensile and yield strength of thixoformed-T6 samples were enhanced by 45% and 39%, respectively, compared to as-cast samples. The thixoformed-T6 samples observed the highest value of tensile elongation to fracture of 4.8 ± 0.4%. The tensile fractures surface of thixoformed-T6 samples exhibited decline in each of tensile strength and ductility, due to occurrence of Fe-rich intermetallic on the samples.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

Data Availability

All data included in this manuscript are available upon request by contact with the corresponding author.

References

  1. M.S. Salleh, M.Z. Omar, J. Syarif, The effects of Mg addition on the microstructure and mechanical properties of thixoformed Al-5 % Si-Cu alloys. J. Alloy. Compd. 621, 121–130 (2015)

    Article  CAS  Google Scholar 

  2. M.A. Abdelgnei, M.Z. Omar, M.J. Ghazali et al., Dry sliding wear behaviour of thixoformed Al-57Si–2Cu-03 Mg alloys at high temperatures using Taguchi method. Wear 2019 (2019). https://doi.org/10.1016/j.wear.2019.203134

  3. H. Pourfallah, M. Shahmiri, Effect of SIMA process on microstructure and wear behavior of Al-Mg 2 Si-3% Ni composite. Metallogr. Microstruct. Anal. 8, 109–117 (2019). https://doi.org/10.1007/s13632-018-0500-z

    Article  Google Scholar 

  4. M.C. Flemings, R.G.Y. Riek, K, , Rheocasting. Mater. Sci. Eng. 25, 103–117 (1976). https://doi.org/10.1016/0025-5416(76)90057-4

    Article  CAS  Google Scholar 

  5. M.M. Shehata, M.E. Moussa, The combined effect of cooling slope plate casting and mold vibration on microstructure, hardness and wear behavior of al-si alloy (A390). Int. J. Metalcast. (2020). https://doi.org/10.1007/s40962-020-00497-0

    Article  Google Scholar 

  6. S. Jozic, Optimization of semi-solid high-pressure die casting process by computer simulation. Taguchi Method Grey Relat. Anal. (2020). https://doi.org/10.1007/s40962-020-00422-5

    Article  Google Scholar 

  7. W.R. Loué, M. Suéry, Microstructural evolution during partial remelting of AlSi7Mg alloys. Mater. Sci. Eng., A 203, 1–13 (1995). https://doi.org/10.1016/0921-5093(95)09861-5

    Article  Google Scholar 

  8. K.N. Campo, C.T.W. Proni, E.J. Zoqui, Influence of the processing route on the microstructure of aluminum alloy A356 for thixoforming. Mater. Charact. 85, 26–37 (2013). https://doi.org/10.1016/j.matchar.2013.08.011

    Article  CAS  Google Scholar 

  9. C.G. Kang, S.W. Youn, Mechanical properties of particulate reinforced metal matrix composites by electromagnetic and mechanical stirring and reheating process for thixoforming. J. Mater. Process. Technol. 147, 10–22 (2004). https://doi.org/10.1016/S0924-0136(03)00606-X

    Article  CAS  Google Scholar 

  10. J.F. Jiang, Y.Z. Liu, G.F. Xiao, Y. Wang, Thixoforming of semisolid slurry with high fraction solid fabricated by partial melting of commerical wrought aluminum alloys. Solid State Phenom. 285, 210–218 (2019).

    Article  Google Scholar 

  11. B. Zhou, S. Lu, K. Xu et al., Microstructure and simulation of semisolid aluminum alloy castings in the process of stirring integrated transfer-heat (SIT) with water cooling. Int. J. Metalcast. (2019). https://doi.org/10.1007/s40962-019-00357-6

    Article  Google Scholar 

  12. P. Das, P. Dutta, Three-dimensional phase field simulation of spheroidal grain formation during semi solid processing of Al-7Si-03 Mg alloy. Comput. Mater. Sci. (2020). https://doi.org/10.1016/j.commatsci.2020.109856

  13. T. Motegi, F. Tanabe, Continuous casting of semisolid Al-Si-Mg alloy. Continuous Cast. (2000). https://doi.org/10.4028/www.scientific.net/MSF.419-422.605

    Article  Google Scholar 

  14. Y. Birol, A357 thixoforming feedstock produced by cooling slope casting. J. Mater. Process. Technol. 186, 94–101 (2007). https://doi.org/10.1016/j.jmatprotec.2006.12.021

    Article  CAS  Google Scholar 

  15. T. Haga, P. Kapranos, Simple rheocasting processes. J. Mater. Process. Technol. 130–131, 594–598 (2002). https://doi.org/10.1016/S0924-0136(02)00819-1

    Article  Google Scholar 

  16. K.S. Alhawari, M.Z. Omar, M.J. Ghazali et al., Evaluation of the microstructure and dry sliding wear behaviour of thixoformed A319 aluminium alloy. Mater. Des. 76, 169–180 (2015). https://doi.org/10.1016/j.matdes.2015.03.057

    Article  CAS  Google Scholar 

  17. M.A. Abdelgnei, M.Z. Omar, M.J. Ghazali et al., Dry sliding wear behaviour of rheocat Al-5.7Si-2Cu-0.3Mg alloy. Int. J. Eng. Technol. 7, 38–42 (2018)

    Article  CAS  Google Scholar 

  18. M.S. Salleh, M.Z. Omar, J. Syarif et al., Microstructure and mechanical properties of thixoformed A319 aluminium alloy. Mater. Des. 64, 142–152 (2014). https://doi.org/10.1016/j.matdes.2014.07.014

    Article  CAS  Google Scholar 

  19. M.M. Shehata, M.E. Moussa, Optimizing the pouring temperature for semisolid casting of a hypereutectic al-si alloy using the cooling slope plate method. Int. J. Metalcast. (2020). https://doi.org/10.1007/s40962-020-00465-8

    Article  Google Scholar 

  20. Y. Li, H. Li, L. Katgerman et al., Recent advances in hot tearing during casting of aluminium alloys. Prog. Mater Sci. (2020). https://doi.org/10.1016/j.pmatsci.2020.100741

    Article  Google Scholar 

  21. W.G. Cho, C.G. Kang, Mechanical properties and their microstructural evaluation in the thixoforming process of semisolid aluminium alloy. J. Mater. Process. Technol. 105, 269–277 (2000). https://doi.org/10.1016/S0924-0136(00)00577-X

    Article  Google Scholar 

  22. A. Forn, G. Vaneetveld, J.C. Pierret et al., Thixoextrusion of A357 aluminium alloy. Trans. Nonferrous Metals Soc. China 20, 1005–1009 (2010). https://doi.org/10.1016/S1003-6326(10)60621-8

    Article  Google Scholar 

  23. A. Fadavi Boostani, S. Tahamtan, Effect of a novel thixoforming process on the microstructure and fracture behavior of A356 aluminum alloy. Mater. Des. 31, 3769–3776 (2010). https://doi.org/10.1016/j.matdes.2010.03.019

    Article  CAS  Google Scholar 

  24. A. Bolouri, C.G. Kang, Characteristics of thixoformed A356 aluminum thin plates with microchannels. Mater. Charact. 82, 86–96 (2013). https://doi.org/10.1016/j.matchar.2013.05.008

    Article  CAS  Google Scholar 

  25. M. Paes, E.J. Zoqui, Semi-solid behavior of new Al-Si-Mg alloys for thixoforming. Mater. Sci. Eng. A 406, 63–73 (2005). https://doi.org/10.1016/j.msea.2005.07.018

    Article  CAS  Google Scholar 

  26. A. Pola, R. Roberti, M. Modigell, L. Pape, Rheological characterization of a new alloy for thixoforming. Solid State Phenom. (2008). https://doi.org/10.4028/www.scientific.net/SSP.141-143.301

    Article  Google Scholar 

  27. C. Gang, Z. Tao, W. Bo et al., Microstructure evolution and segregation behavior of thixoformed Al-Cu-Mg-Mn alloy. Trans. Nonferrous Metals Soc. China 26, 39–50 (2016). https://doi.org/10.1016/S1003-6326(16)64086-4

    Article  CAS  Google Scholar 

  28. B.P. Gautham, P.C. Kapur, Rheological model for short duration response of semi-solid metals. Mater. Sci. Eng. A 393, 223–238 (2005). https://doi.org/10.1016/j.msea.2004.10.028

    Article  CAS  Google Scholar 

  29. D. Liu, H.V. Atkinson, R.L. Higginson, Disagglomeration in thixoformed wrought aluminium alloy 2014. Mater. Sci. Eng. A 392, 73–80 (2005). https://doi.org/10.1016/j.msea.2004.09.028

    Article  CAS  Google Scholar 

  30. Y. Birol, Comparison of thixoformability of AA6082 reheated from the as-cast and extruded states. J. Alloy. Compd. 461, 132–138 (2008). https://doi.org/10.1016/j.jallcom.2007.07.016

    Article  CAS  Google Scholar 

  31. K.S. Alhawari, M.Z. Omar, M.J. Ghazali, M.S. Salleh, M. Mohammed, Microstructural evolution during semisolid processing of Al–Si–Cu alloy with different Mg contents. Trans. Nonferrous Metals Soc. China 27, 1483–1497 (2017). https://doi.org/10.1016/S1003-6326(17)60169-9

    Article  CAS  Google Scholar 

  32. M.F. Ibrahim, E. Samuel, A.M. Samuel et al., Metallurgical parameters controlling the microstructure and hardness of Al–Si–Cu–Mg base alloys. Mater. Des. 32, 2130–2142 (2011). https://doi.org/10.1016/j.matdes.2010.11.040

    Article  CAS  Google Scholar 

  33. J. Peng, X. Tang, J. He, D. Xu, Effect of heat treatment on microstructure and tensile properties of A356 alloys. Trans. Nonferrous Metals Soc. China 21, 1950–1956 (2011). https://doi.org/10.1016/S1003-6326(11)60955-2

    Article  CAS  Google Scholar 

  34. M. Yildirim, D. Özyürek, The effects of Mg amount on the microstructure and mechanical properties of Al-Si-Mg alloys. Mater. Des. 51, 767–774 (2013). https://doi.org/10.1016/j.matdes.2013.04.089

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Universiti Kebangsaan Malaysia (UKM) and the authors gratefully acknowledge Ministry of Higher Education (MOHE), Malaysia, for the financial support under research grant DIP/2016/007.

Author information

Authors and Affiliations

Authors

Contributions

In this work, MAA, MZO, MJG conceived and designed the experiment; MZO provided the materials; MAA, MNM and MJG conducted the microstructure characterisation and mechanical properties test; MA Abdelgnei and MZO wrote the paper.

Corresponding author

Correspondence to M. A. Abdelgnei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelgnei, M.A., Omar, M.Z., Ghazali, M.J. et al. Microstructure Evaluation and Mechanical Properties of Thixoformed Ai–5.7Si–2Cu–0.3Mg Aluminum Alloys. Inter Metalcast 16, 370–384 (2022). https://doi.org/10.1007/s40962-021-00610-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-021-00610-x

Keywords

Navigation