Skip to main content

Advertisement

Log in

A stochastic sensitivity-based multi-objective optimization method for short-term wind speed interval prediction

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

With the increasing penetration of wind power in renewable energy systems, it is important to improve the accuracy of wind speed prediction. However, wind power generation has great uncertainties which make high-quality interval prediction a challenge. Existing multi-objective optimization interval prediction methods do not consider the robustness of the model. Thus, trained models for wind speed interval prediction may not be optimal for future predictions. In this paper, the prediction interval coverage probability, the prediction interval average width, and the robustness of the model are used as three objective functions for determining the optimal model of short-term wind speed interval prediction using multi-objective optimization. Furthermore, a new Stochastic Sensitivity for Prediction Intervals (SS_PIs) is proposed in this work to measure the stability and robustness of the model for interval prediction. Using wind farm data from countries on two different continents as case studies, experimental results show that the proposed method yields better prediction intervals in terms of all metrics including prediction interval coverage probability (PICP), prediction interval normalized average width (PINAW) and SS_PIs. For example, at the prediction interval nominal confidence (PINC) of 85%, 90% and 95%, the proposed method has the best performance in all metrics of the USA wind farm dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AI:

Artificial intelligence

ANN:

Artificial neural network

ARIMA:

Autoregressive integrated moving average model

ARMA:

Autoregressive moving average model

BP:

Back propagation

EEMD:

Electromagnetic mode decomposition

EMD:

Empirical mode decomposition

GRU:

Gated recurrent unit

ICEEMDAN:

Improved ceemdan

LSTM:

Long short-term memory

LUBE:

Lower upper bound estimation

MLP:

Multilayer perceptron

MOGA:

Multi-objective genetic algorithm

MSE:

Mean square error

NSGA-III:

Non-dominated sorting genetic algorithm-III

NWP:

Numerical weather prediction

PICP:

Prediction interval coverage probability

PINAW:

Prediction interval normalized average width

PINC:

Prediction interval nominal confidence

PIs:

Prediction intervals

RNN:

Recurrent neural network

SS_PIs:

Stochastic sensitivity for prediction intervals

SSMOO:

Stochastic sensitivity-based multi-objective optimization

WNN-PICEA-g:

Wavelet neural network—preference inspired co-evolutionary algorithm—goal vectors

References

  1. Shrivastava NA, Kunal L, Panigrahi BK (2017) A multiobjective framework for wind speed prediction interval forecasts. Renew Energy 87(2):903–910

    Google Scholar 

  2. Zhang Y, Pan G, Zhao Y, Li Q, Wang F (2020) Short-term wind speed interval prediction based on artificial intelligence methods and error probability distribution. Energy Convers Manag 224:113346

    Article  Google Scholar 

  3. Lai CS, Locatelli G (2021) Are energy policies for supporting low-carbon power generation killing energy storage? J Clean Prod 280:124626

    Article  Google Scholar 

  4. Khodayar M, Kaynak O, Khodayar M (2017) Rough deep neural architecture for short-term wind speed forecasting. IEEE Trans Ind Inform 13(6):2770–2779

    Article  Google Scholar 

  5. Zhang Y, Zhao Y, Pan G, Zhang J (2020) Wind speed interval prediction based on Lorenz disturbance distribution. IEEE Trans Sustain Energy 11(2):807–816

    Article  Google Scholar 

  6. Chai S, Xu Z, Lai LL, Wong KP (2015) An overview on wind power forecasting methods. In: Proceedings of the international conference on machine learning and cybernetics, IEEE, Guangzhou, China

  7. Zhang H-T, Chang K, Zhang H, Lai LL (2016) A novel probabilistic approach for evaluating fault ride-through capability of wind generation. In: International conference on machine learning and cybernetics, Jeju, Korea, 9–12 July

  8. Ssekulima EB, Anwar MB, Al-Hinai A, El-Moursi MS (2016) Wind speed and solar irradiance forecasting techniques for enhanced renewable energy integration with the grid: a review. IET Renew Power Gener 10(7):885–989

    Article  Google Scholar 

  9. Yin H, Dong Z, Chen Y, Ge J, Lai LL, Vaccaro A, Meng A (2017) An effective secondary decomposition approach for wind power forecasting using extreme learning machine trained by crisscross optimization. Energy Convers Manag 150:108–121

    Article  Google Scholar 

  10. Zhang J, Draxl C, Hopson T, Monache LD, Vanvyve E, Hodge B (2015) Comparison of numerical weather prediction based deterministic and probabilistic wind resource assessment methods. Appl Energy 156:528–541

    Article  Google Scholar 

  11. Zhang Z, Ye L, Qin H, Liu Y, Wang C, Yu X, Yin X, Li J (2019) Wind speed prediction method using shared weight long short-term memory network and Gaussian process regression. Appl Energy 247:270–284

    Article  Google Scholar 

  12. Naik J, Satapathy P, Dash PK (2018) Short-term wind speed and wind power prediction using hybrid empirical mode decomposition and kernel ridge regression. Appl Soft Comput 70:1167–1188

    Article  Google Scholar 

  13. Erdem E, Shi J (2011) ARMA based approaches for forecasting the tuple of wind speed and direction. Appl Energy 88(4):1405–1414

    Article  Google Scholar 

  14. Yunus K, Thiringer T, Chen P (2016) ARIMA-based frequency-decomposed modeling of wind speed time series. IEEE Trans Power Syst 31(4):2546–2556

    Article  Google Scholar 

  15. Li S, Wang P, Goel L (2015) Wind power forecasting using neural network ensembles with feature selection. IEEE Trans Sustain Energy 6(4):1447–1456

    Article  Google Scholar 

  16. Luo X et al (2018) Short-term wind speed forecasting via stacked extreme learning machine with generalized correntropy. IEEE Trans Ind Inf 14(11):4963–4971

    Article  Google Scholar 

  17. Jahangir H, Golkar MA, Alhameli F, Mazouz A, Ahmadian A, Elkamel A (2020) Short-term wind speed forecasting framework based on stacked denoising auto-encoders with rough ANN. Sustain Energy Technol Assess 38:100601

    Google Scholar 

  18. Huang NE, Shen Z, Long SR, Wu ML, Shih HH, Zheng Q et al (1998) The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis. Proc R Soc Lond A 454:903–995

    Article  MathSciNet  MATH  Google Scholar 

  19. Wu Z, Huang NE (2009) Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv Adapt Data Anal 01(01):1–41

    Article  Google Scholar 

  20. Liu Z, Jiang P, Zhang L, Niu X (2020) A combined forecasting model for time series: application to short-term wind speed forecasting. Appl Energy 259:114137

    Article  Google Scholar 

  21. Ahmadi G, Teshnehlab M (2017) Designing and implementation of stable sinusoidal rough-neural identifier. IEEE Trans Neural Netw Learn Syst 28(8):1774–1786

    Article  MathSciNet  Google Scholar 

  22. Niu X, Wang J (2019) A combined model based on data preprocessing strategy and multi-objective optimization algorithm for short-term wind speed forecasting. Appl Energy 241:519–539

    Article  Google Scholar 

  23. Shi Z, Liang H, Dinavahi V (2018) Direct interval forecast of uncertain wind power based on recurrent neural networks. IEEE Trans Sustain Energy 9(3):1177–1187

    Article  Google Scholar 

  24. Kabir HMD, Khosravi A, Hosen MA, Nahavandi S (2018) Neural network-based uncertainty quantification: a survey of methodologies and applications. IEEE Access 6:36218–36234

    Article  Google Scholar 

  25. Hong T, Fan S (2016) Probabilistic electric load forecasting: a tutorial review. Int J Forecast 32(3):914–938

    Article  Google Scholar 

  26. Wan C, Wang J, Lin J, Song Y, Dong ZY (2018) Nonparametric PIs of wind power via linear programming. IEEE Trans Power Syst 33(1):1074–1076

    Article  Google Scholar 

  27. Yan J et al (2017) Hybrid probabilistic wind power forecasting using temporally local Gaussian process. IEEE Trans Sustain Energy 7(1):87–95

    Article  Google Scholar 

  28. Wang Z et al (2018) Short-term probabilistic forecasting for regional wind power using distance-weighted kernel density estimation. IET Renew Power Gener 12(15):1725–1732

    Article  Google Scholar 

  29. Khosravi A, Nahavandi S, Creighton D, Atiya AF (2011) Lower upper bound estimation method for construction of neural network-based PIs. IEEE Trans Neural Netw 22(3):337–346

    Article  Google Scholar 

  30. Quan H, Srinivasan D, Khosravi A (2014) Short-term load and wind power forecasting using neural network-based PIs. IEEE Trans Neural Netw Learn Syst 25(2):303–315

    Article  Google Scholar 

  31. Hu M et al (2017) A novel multi-objective optimal approach for wind power interval prediction. Energies 10(4):419

    Article  Google Scholar 

  32. Ak R, Vitelli V, Zio E (2015) An interval-valued neural network approach for uncertainty quantification in short-term wind speed prediction. IEEE Trans Neural Netw Learn Syst 26(11):2787–2800

    Article  MathSciNet  Google Scholar 

  33. Kavousi-Fard A, Khosravi A, Nahavandi S (2016) A new fuzzy-based combined prediction interval for wind power forecasting. IEEE Trans Power Syst 31(1):18–26

    Article  Google Scholar 

  34. Wan C, Xu Z, Pinson P (2013) Direct interval forecasting of wind power. IEEE Trans Power Syst 28(4):4877–4878

    Article  Google Scholar 

  35. Wan C, Xu Z, Pinson P, Dong ZY, Wong KP (2014) Optimal prediction intervals of wind power generation. IEEE Trans Power Syst 29(3):1166–1174

    Article  Google Scholar 

  36. Hosen MA, Khosravi A, Nahavandi S, Creighton D (2015) Improving the quality of prediction intervals through optimal aggregation. IEEE Trans Ind Electron 62(7):4420–4429

    Article  Google Scholar 

  37. Zhang G, Wu Y, Wong KP, Xu Z, Dong ZY, Iu HHC (2015) An advanced approach for construction of optimal wind power prediction intervals. IEEE Trans Power Syst 30(5):2706–2715

    Article  Google Scholar 

  38. Li C, Tang G, Xue C, Saeed A, Hu X (2019) Short-term wind speed interval prediction based on ensemble GRU model. IEEE Trans Sustain Energy. https://doi.org/10.1109/TSTE.2019.2926147

    Article  Google Scholar 

  39. Yeung DS, Li J, Ng WWY, Chan PPK (2016) MLPNN training via a multiobjective optimization of training error and stochastic sensitivity. IEEE Trans Neural Netw Learn Syst 27(5):978–992

    Article  MathSciNet  Google Scholar 

  40. Deb K, Jain H (2014) An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach part I: solving problems with box constraints. IEEE Trans Evol Comput 18(4):577–601

    Article  Google Scholar 

  41. Jain H, Deb K (2014) An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach part II: handling constraints and extending to an adaptive approach. IEEE Trans Evol Comput 18(4):602–622

    Article  Google Scholar 

  42. Khosravi A, Nahavandi S, Creighton D (2010) Construction of optimal prediction intervals for load forecasting problems. IEEE Trans Power Syst 25(3):1496–1503

    Article  Google Scholar 

  43. Jin Y, Sendhoff B (2008) Pareto-based multiobjective machine learning: an overview and case studies. IEEE Trans Syst Man Cybern Part C (Appl Rev) 38(3):397–415

    Article  Google Scholar 

  44. [Online]. http://www.nrel.gov/index.html. Accessed 3 Aug 2019

  45. [Online]. http://www.sotaventogalicia.com/en/real-time-data/historical. Accessed 21 Oct 2019

  46. Shi Z, Liang H, Dinavahi V (2018) Wavelet neural network based multiobjective interval prediction for short-term wind speed. IEEE Access 6:63352–63365

    Article  Google Scholar 

Download references

Acknowledgements

This work is in part supported by National Natural Science Foundation of China under Grants 61876066 and 61572201, in part by Guangdong Province Scienceand Technology Plan Project (Collaborative Innovation and Platform Environment Construction) 2019A050510006, in part by Brunel University London BRIEF Funding, UK and in part by the Education Department of Guangdong Province: New and Integrated Energy System Theory and Technology Research Group [Project Number 2016KCXTD022].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chun Sing Lai, Loi Lei Lai or Cankun Zhong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Lai, C.S., Ng, W.W.Y. et al. A stochastic sensitivity-based multi-objective optimization method for short-term wind speed interval prediction. Int. J. Mach. Learn. & Cyber. 12, 2579–2590 (2021). https://doi.org/10.1007/s13042-021-01340-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-021-01340-6

Keywords

Navigation