Skip to main content
Log in

32 W TEM00-Mode Side-Pumped Solar Laser Design

  • SOLAR ENERGY CONCENTRATORS
  • Published:
Applied Solar Energy Aims and scope Submit manuscript

Abstract

A compact side-pumped solar laser design is proposed to improve the TEM00-mode solar laser output performance substantially. A double-stage secondary concentrator was composed of a rectangular hollow pipe and a 2V-shaped dry pump cavity, which couples and redistributes the concentrated solar radiation from the focal zone of a 2 m diameter parabolic mirror into a grooved Nd:YAG rod. The solar laser performance was numerically optimized by both ZEMAX® and LASCADTM software. Maximum TEM00-mode solar laser power of 32 W was numerically calculated for a 4.5 mm diameter, 34 mm length grooved Nd:YAG rod, corresponding to 10.7 W/m2 collection efficiency. This value is 1.25 times more than the numerical record. Laser beam brightness figure of merit of 31.4 W was numerically attained, which is 1.84 times more than the numerical record. The proposed laser head scheme has a simple and compact design, as compared to previous schemes. Good TEM00-mode solar laser thermal performance was also numerically demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Hoseinzadeh, S., Ghasemi, M.H., and Heyns, S., Application of hybrid systems in solution of low power generation at hot seasons for micro hydro systems, Renewable Energy, 2020, vol. 160, pp. 323–332.

    Article  Google Scholar 

  2. Avezova, N.R., Khaitmukhamedov, A.E., Usmanov, A.Y., et al., Solar thermal power plants in the world: The experience of development and operation, Appl. Sol. Energy, 2017, vol. 53, no. 1, pp. 72–77.

    Article  Google Scholar 

  3. Hoseinzadeh, S., Ghasemiasl, R., Bahari, A., et al., The injection of Ag nanoparticles on surface of WO3 thin film: enhanced electrochromic coloration efficiency and switching response, J. Mater. Sci.: Mater. Electron., 2017, vol. 28, no. 19, pp. 14855–14863.

    Google Scholar 

  4. Yabe, T., Uchida, S., Ikuta, K., et al., Demonstrated fossil-fuel-free energy cycle using magnesium and laser, Appl. Phys. Lett., 2006, vol. 89, no. 26, id. 261107.

  5. Liang, D., Vistas, C.R., Tiburcio, B.D., et al., Solar-pumped Cr:Nd:YAG ceramic laser with 6.7% slope efficiency, Sol. Energy Mater. Sol. Cells, 2018, vol. 185, pp. 75–79.

    Article  Google Scholar 

  6. Lando, M., Kagan, J.A., Shimony, Y., et al., Solar-pumped solid state laser program, 10th Meeting on Optical Engineering in Israel, SPIE, 1997.

  7. Vasile, M. and Maddock, C.A., Design of a formation of solar pumped lasers for asteroid deflection, Adv. Space Res., 2012, vol. 50, no. 7, pp. 891–905.

    Article  Google Scholar 

  8. Kiss, Z.J., Lewis, H.R., and Duncan, R.C., Sun pumped continuous optical maser, Appl. Phys. Lett., 1963, vol. 2, no. 5, pp. 93–94.

    Article  Google Scholar 

  9. Young, C.G., A sun-pumped cw one-watt laser, Appl. Opt., 1966, vol. 5, no. 6, pp. 993–997.

    Article  Google Scholar 

  10. Arashi, H., Oka, Y., Sasahara, N., et al., A solar-pumped CW 18 W Nd:YAG laser, Jpn. J. Appl. Phys., 1984, vol. 23, part 1, no. 8, pp. 1051–1053.

  11. Weksler, M. and Shwartz, J., Solar-pumped solid-state lasers, IEEE J. Quantum Electron., 1988, vol. 24, no. 6, pp. 1222–1228.

    Article  Google Scholar 

  12. Lando, M., Shimony, Y., Benmair, R.M.J., et al., Visible solar-pumped lasers, Opt. Mater., 1999, vol. 13, no. 1, pp. 111–115.

    Article  Google Scholar 

  13. Lando, M., Kagan, J., Linyekin, B., et al., A solar-pumped Nd:YAG laser in the high collection efficiency regime, Opt. Commun., 2003, vol. 222, no. 1, pp. 371–381.

    Article  Google Scholar 

  14. Fazilov, A., Riskiev, T.T., Abdurakhmanov, A.A., et al., Concentrated solar energy conversion to powerful laser radiation on neodymium activated yttrium-aluminum garnet, Appl. Sol. Energy, 2008, vol. 44, no. 2, pp. 93–96.

    Article  Google Scholar 

  15. Ohkubo, T., Yabe, T., Yoshida, K., et al., Solar-pumped 80 W laser irradiated by a Fresnel lens, Opt. Lett., 2009, vol. 34, no. 2, pp. 175–177.

    Article  Google Scholar 

  16. Dinh, T.H., Ohkubo, T., Yabe, T., et al., 120 watt continuous wave solar-pumped laser with a liquid light-guide lens and an Nd:YAG rod, Opt. Lett., 2012, vol. 37, no. 13, pp. 2670–2672.

    Article  Google Scholar 

  17. Liang, D. and Almeida, J., Solar-pumped TEM00 mode Nd:YAG laser, Opt. Express, 2013, vol. 21, no. 21, pp. 25107–25112.

    Article  Google Scholar 

  18. Almeida, J., Liang, D., Guillot, E., et al., A 40 W cw Nd:YAG solar laser pumped through a heliostat: a parabolic mirror system, Laser Phys., 2013, vol. 23, no. 6, id. 065801.

  19. Xu, P., Yang, S., Zhao, C., et al., High-efficiency solar-pumped laser with a grooved Nd:YAG rod, Appl. Opt., 2014, vol. 53, no. 18, pp. 3941–3944.

    Article  Google Scholar 

  20. Almeida, J., Liang, D., Vistas, C.R., et al., Highly efficient end-side-pumped Nd:YAG solar laser by a heliostat–parabolic mirror system, Appl. Opt., 2015, vol. 54, no. 8, pp. 1970–1977.

    Article  Google Scholar 

  21. Liang, D., Almeida, J., Vistas, C.R., et al., Solar-pumped TEM00 mode Nd:YAG laser by a heliostat–parabolic mirror system, Sol. Energy Mater. Sol. Cells, 2015, vol. 134, pp. 305–308.

    Article  Google Scholar 

  22. Almeida, J., Liang, D., Vistas, C.R., et al., 5.5 W continuous-wave TEM00-mode Nd:YAG solar laser by a light-guide/2V-shaped pump cavity, Appl. Phys. B: Lasers Opt., 2015, vol. 121, no. 4, pp. 473–482.

    Article  Google Scholar 

  23. Vistas, C.R., Liang, D., Almeida, J., et al., TEM00 mode Nd:YAG solar laser by side-pumping a grooved rod, Opt. Commun., 2016, vol. 366, pp. 50–56.

    Article  Google Scholar 

  24. Liang, D., Almeida, J., Vistas, C.R., et al., High-efficiency solar-pumped TEM00-mode Nd:YAG laser, Sol. Energy Mater. Sol. Cells, 2016, vol. 145, pp. 397–402.

    Article  Google Scholar 

  25. Liang, D., Almeida, J., and Vistas, C.R., 25 W/m2 collection efficiency solar-pumped Nd:YAG laser by a heliostat-parabolic mirror system, Appl. Opt., 2016, vol. 55, no. 27, pp. 7712–7717.

    Article  Google Scholar 

  26. Payziyev, S., Bakhramov, S., and Shayimov, F., Enhancing of solar pumped liquid laser efficiency, Appl. Sol. Energy, 2016, vol. 52, no. 1, pp. 68–71.

    Article  Google Scholar 

  27. Liang, D., Almeida, J., Vistas, C.R., et al., Solar-pumped Nd:YAG laser with 31.5 W/m2 multimode and 7.9 W/m2 TEM00-mode collection efficiencies, Sol. Energy Mater. Sol. Cells, 2017, vol. 159, pp. 435–439.

    Article  Google Scholar 

  28. Guan, Z., Zhao, C., Zhang, H., et al., 5.04% system slope efficiency solar-pumped Nd:YAG laser by a heliostat-parabolic mirror system, J. Photon. Energy, 2018, vol. 8, no. 2, id. 027501.

  29. Smyth, C.J.C., Mirkhanov, S., Quarterman, A.H., et al., 27.5 W/m2 collection efficiency solar laser using a diffuse scattering cooling liquid, Appl. Opt., 2018, vol. 57, no. 15, pp. 4008–4012.

    Article  Google Scholar 

  30. Liang, D., Vistas, C.R., Almeida, J., et al., Side-pumped continuous-wave Nd:YAG solar laser with 5.4% slope efficiency, Sol. Energy Mater. Sol. Cells, 2019, vol. 192, pp. 147–153.

    Article  Google Scholar 

  31. Vistas, C.R., Liang, D., Almeida, J., et al., A doughnut-shaped Nd:YAG solar laser beam with 4.5 W/m2 collection efficiency, Sol. Energ., 2019, vol. 182, pp. 42–47.

    Article  Google Scholar 

  32. Vistas, C.R., Liang, D., Garcia, D., et al., Ce:Nd:YAG continuous-wave solar-pumped laser, Optik, 2020, vol. 207, id. 163795.

  33. Masuda, T., Iyoda, M., Yasumatsu, Y., et al., A fully planar solar pumped laser based on a luminescent solar collector, Commun. Phys., 2020, vol. 3, no. 1, art. no. 60.

    Article  Google Scholar 

  34. Vistas, C.R., Liang, D., and Almeida, J., Solar-pumped TEM00 mode laser simple design with a grooved Nd:YAG rod, Sol. Energ., 2015, vol. 122, pp. 1325–1333.

    Article  Google Scholar 

  35. Gleckman, P., Achievement of ultrahigh solar concentration with potential for efficient laser pumping, Appl. Opt., 1988, vol. 27, no. 21, pp. 4385–4391.

    Article  Google Scholar 

  36. Bouadjemine, R., Liang, D., Almeida, J., et al., Stable TEM00-mode Nd:YAG solar laser operation by a twisted fused silica light-guide, Opt. Laser Technol., 2017, vol. 97, pp. 1–11.

    Article  Google Scholar 

  37. Mehellou, S., Liang, D., Almeida, J., et al., Stable solar-pumped TEM00-mode 1064 nm laser emission by a monolithic fused silica twisted light guide, Sol. Energy, 2017, vol. 155, pp. 1059–1071.

    Article  Google Scholar 

  38. Almeida, J., Liang, D., Vistas, C.R., A doughnut-shaped Nd:YAG solar laser beam, Opt. Laser Technol., 2018, vol. 106, pp. 1–6.

    Article  Google Scholar 

  39. Almeida, J., Liang, D., Tibúrcio, B., et al., Numerical modeling of a four-rod pumping scheme for improving TEM00-mode solar laser performance, J. Photon. Energy, 2019, vol. 9, no. 1, id. 018001.

  40. ASTM Standard G173-03, 2012. Standard Tables for Reference Solar Spectral Irradiances: Direct Normal, and Hemispherical on 37° Tilted Surface, West Conshohocken, PA: ASTM International, 2012.

  41. Zhao, B., Zhao, C., He, J., Yang, S., The study of active medium for solar-pumped solid-state lasers, Acta Opt. Sin., 2007, vol. 27, pp. 1797–1801.

    Google Scholar 

  42. Koechner, W., Solid-State Laser Engineering, Berlin, Heidelberg, New York: Springer-Verlag, 1999, 5th ed.

    Book  Google Scholar 

  43. Union Optic. https://pdf.directindustry.com/pdf/union-optic-inc/ crystal/173804-664054.html.

  44. Payziyev, S., Makhmudov, K., and Abdel-Hadi, Y.A., Simulation of a new solar Ce:Nd:YAG laser system, Optik, 2018, vol. 156, pp. 891–895.

    Article  Google Scholar 

  45. Guan, Z., Zhao, C., Li, J., et al., 32.1 W/m2 continuous wave solar-pumped laser with a bonding Nd:YAG/YAG rod and a Fresnel lens, Opt. Laser Technol., 2018, vol. 107, pp. 158–161.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The FCT-MCTES fellowship grants SFRH/BPD/125116/2016, PD/BD/142827/2018, PD/BD/128267/2016 of C.R. Vistas, D. Garcia, B.D. Tibúrcio, respectively, and the Contract CEECIND/03081/2017 of J. Almeida are acknowledged.

Funding

Financial support of the strategic project (UIDB/00068/2020) of the Science and Technology Foundation of Portuguese Ministry of Science, Technology and Higher Education (FCT-MCTES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Liang.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vistas, C.R., Liang, D., Garcia, D. et al. 32 W TEM00-Mode Side-Pumped Solar Laser Design. Appl. Sol. Energy 56, 449–457 (2020). https://doi.org/10.3103/S0003701X20060122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0003701X20060122

Keywords:

Navigation