Skip to main content
Log in

Efficiency of Solar Trackers and Bifacial Photovoltaic Panels for Southern Regions of the Russian Federation and the Republic of Uzbekistan

  • DIRECT CONVERSION OF SOLAR ENERGY INTO ELECTRICAL ENERGY
  • Published:
Applied Solar Energy Aims and scope Submit manuscript

Abstract

One of the necessary requirements in Russia for obtaining subsidies that will compensate investments in a solar power plant (SPP) is to achieve the normative value of the capacity factor (CF). Although the stimulation of solar generation in the Republic of Uzbekistan is unconditional, the task of increasing the CF is also urgent for Uzbekistan. The purpose of the study was to assess the impact on a solar plants CF by the use of two methods for increasing the solar influx on the surface of a SPP solar battery; the use of Sun tracking systems (trackers) and bifacial photovoltaic panels. Calculation of the CF was carried out for several types of photovoltaic panels in the climatic conditions of the Republic of Uzbekistan and the south of Russia by dynamic simulation using the TRNSYS code. Actinometric and climatic data were taken from the NASA POWER satellite observation database; the spatial resolution was 1° × 1° in latitude and longitude. Photovoltaic panels were described by the five-parameter model, whose parameters were determined using the manufacturers’ datasheets. It is shown that the use of vertical axis and tilt axis trackers can increase the CF in comparison with fixed panels by 6.5–6.6%, which is close to the effect of biaxial trackers (up to 7.0% of CF growth). It was found that the use of bifacial panels was most effective together with tilt axis trackers (the increase of CF is up to 4.1%). This effect is less for fixed panels and other types of trackers (up to 3.6%). According to the simulations, the magnitude of surface albedo (without the use of special reflectors) has almost no effect on the usage of bifacial panels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Postanovlenie Pravitel’stva RF ot 28.05.2013 no. 449 (red. ot 27.09.2018) “O mekhanizme stimulirovaniya ispol’zovaniya vozobnovlyaemykh istochnikov energii na optovom rynke elektricheskoi energii i moshchnosti” (Decree of the Government of the Russian Federation no. 449 of May 28, 2013 (as amended on September 27, 2018) “On the Mechanism for Stimulating the Use of Renewable Energy Sources in the Wholesale Market of Electricity and Power”). http://www.consultant.ru/document/cons_doc_LAW_146916.

  2. Kiseleva, S.V., Frid, S.E., and Tarasenko, A.B., Features of measures to stimulate the use of solar energy in the Russian Federation and their impact on the relevance of some scientific and technical problems, Sbornik trudov rossiiskoi konferentsii. Fiziko-khimicheskie problemy vozobnovlyaemoi energetiki (Proceedings of the Russian Conference. Physical and Chemical Problems of Renewable Energy), November 18–20, 2019, pp. 19–20.

  3. Zakon Respubliki Uzbekistan no. ZRU-539 ot 21.05.2019 g. “Ob ispol’zovanii vozobnovlyaemykh istochnikov energii” (Law of the Republic of Uzbekistan no. ZRU-539 of May 21, 2019 “On the Use of Renewable Energy Sources”). https://lex.uz/docs/4346835.

  4. Postanovlenie Prezidenta Respubliki Uzbekistan no. PP-4422 ot 22.08.2019 g. “Ob uskorennykh merakh po povysheniyu energoeffektivnosti otraslei ekonomiki i sotsial’noi sfery, vnedreniyu energosberegayushchikh tekhnologii i razvitiyu vozobnovlyaemykh istochnikov energii” (Decree of the President of the Republic of Uzbekistan no. PP-4422 of August 22, 2019 “On Accelerated Measures to Improve the Energy Efficiency of Economic and Social Sectors, the Introduction of Energy-Saving Technologies and the Development of Renewable Energy Sources”). https://lex.uz/docs/4486127.

  5. Hafeza, A.Z., Yousef, A.M., and Harag, N.M., Solar tracking systems: Technologies and trackers drive types – A review, Renewable Sustainable Energy Rev., 2018, vol. 91, pp. 754–782.

    Article  Google Scholar 

  6. Prinsloo, G.J. and Dobson, R.T., Solar Tracking, Sydney: SolarBooks, 2015.

    Google Scholar 

  7. IEC 62817:2014. International Standard. Photovoltaic Systems – Design Qualification of Solar Trackers, Geneva: IEC, 2014.

  8. GOST (State Standard) R 57229-2016: Photovoltaic Systems. Sun Tracking Devices. Technical Specifications, 2016.

  9. Obukhov, S.G. and Plotnikov, I.A., Selection of parameters and analysis of the effectiveness of the use of sun-tracking systems, Izv. Tomsk. Politekh. Univ. Inzh. Georesursov, 2018, vol. 329, no. 10, pp. 95–106.

    Google Scholar 

  10. Strebkov, D.S. and Penjiyev, A.M., Solar power plants with parabolic trough concentrators in the desert area of Karakum, Appl. Sol. Energy, 2019, vol. 55, no. 3, pp. 195–206.

    Article  Google Scholar 

  11. Kitaeva, M.V., Yurchenko, A.V., Skorokhodov, A.V., and Okhorzina, A.V., Sun-tracking systems, Vestn. Nauki Sibiri, 2012, vol. 4, no. 3, pp. 61–67.

    Google Scholar 

  12. Guerrero-Lemus, R., Vega, R., Kim., T., Kimm, A., and Shephard, L.E., Bifacial solar photovoltaics – A technology review, Renewable Sustainable Energy Rev., 2016, vol. 60, pp. 1533–1549.

    Article  Google Scholar 

  13. Berrian, D., Libal, J., Klenk, M., Nussbaumer, H., and Kopecek, R., Performance of bifacial PV arrays with fixed tilt and horizontal single-axis tracking: Comparison of simulated and measured data, IEEE J. Photovoltaics, 2019, vol. 9, no. 6, pp. 1583–1589.

    Article  Google Scholar 

  14. IEC 61215-2:2016. Terrestrial Photovoltaic (PV) Modules – Design Qualification and Type Approval – Part 2: Test Procedures, Geneva: IEC, 2016.

  15. GOST (State Standard) R 56980-2016: Ground-Based Crystalline Silicon Photovoltaic Modules. Test Methods, 2016.

  16. Jacobson, M.Z. and Jadhav, V., World estimates of PV optimal tilt angles and ratios of sunlight incident upon tilted and tracked PV panels relative to horizontal panels, Sol. Energy, 2018, vol. 169, pp. 55–66.

    Article  Google Scholar 

  17. Guo, S., Walsh, T.M., and Peters, M., Vertically mounted bifacial photovoltaic modules: A global analysis, Energy, 2013, vol. 61, pp. 447–454.

    Article  Google Scholar 

  18. Sun, X., Khan, M.R., Deline, C., and Alam, M.A., Optimization and performance of bifacial solar modules: A global perspective, Appl. Energy, 2018, vol. 212, pp. 1601–1610.

    Article  Google Scholar 

  19. Khan, M.R., Hanna, A., Sun, X., and Alam, M.A., Vertical bifacial solar farms: Physics, design, and global optimization, Appl. Energy, 2017, vol. 206, pp. 240–248.

    Article  Google Scholar 

  20. Duffie, J.A. and Beckman, W.A., Solar Engineering of Thermal Processes, Hoboken: Wiley, 2013, 4th ed.

    Book  Google Scholar 

  21. TRNSYS – Transient System Simulation Tool, 2019. http://trnsys.com/.

  22. Rauschenbach, H.S., Solar Cell Array Design Handbook. The Principles and Technology of Photovoltaic Energy Conversion, NY: Van Nostrand Reinhold, 1980.

    Book  Google Scholar 

  23. TRNSYS 17. Volume 4. Mathematical Reference, 2019. http://web.mit.edu/parmstr/Public/TRNSYS/04-MathematicalReference.pdf.

  24. De Soto, W., Klein, S.A., and Beckman, W.A., Improvement and validation of a model for photovoltaic array performance, Sol. Energy, 2006, vol. 80, no. 1, pp. 78–88.

    Article  Google Scholar 

  25. Cotfas, D.T., Cotfas, P.A., and Kaplanis, S., Methods to determine the dc parameters of solar cells: A critical review, Renewable Sustainable Energy Rev., 2013, vol. 28. pp. 588–596.

    Article  Google Scholar 

  26. Humad, A.M., Darweesh, S.Y., Mohammed, K.G., Kamil, M., Mohammed, S.F., Kasim, N.K., Tahseen, T.A., Awad, O.I., and Mekhile, S., Modeling of PV system and parameter extraction based on experimental data: Review and investigation, Sol. Energy, 2020, vol. 199, pp. 742–760.

    Article  Google Scholar 

  27. Suntech HyPro Monocrystalline Solar Module, 2020. http://www.suntech-power.com/webfile/upload/2018/ 11-28/10-43-150445478470281.pdf.

  28. Suntech Polycrystalline Solar Module, 2020. http://www.suntech-power.com/webfile/upload/2018/ 11-28/10-42-5207772112055614.pdf.

  29. Suntech ranked in the “Global Top 20 Companies on PV 2020”, 2020. http://www.suntech-power.com/newsDetails.html?id=4085&parentId=81.

  30. Spetsifikatsiya na fotoelektricheskie moduli 300–320 Vt (Specification for 300–320 W Photovoltaic Modules), 2020.

  31. NASA Prediction of Worldwide Energy Resource (POWER), 2019. https://power.larc.nasa.gov/.

  32. Tarasenko, A.B., Kiseleva, S.V., Popel, O.S., Frid, S.E., Gabderakhmanova, T.S., Avezova, N.R., Simonov, V.M., and Suleimanov, M.Zh., Comparative analysis of simulation models for network photovoltaic power plants, Appl. Sol. Energy, 2020, vol. 56, no. 3, pp. 212–218.

    Article  Google Scholar 

  33. Full KSTAR PV inverter catalogue, 2019. https://bsleco.com/wp-content/uploads/2018/04/PV-Inverter-Catalogue-2018.pdf.

  34. Suntech HyPro Monocrystalline Bifacial Solar Module, 2020. http://www.suntech-power.com/webfile/upload/ 2018/08-08/15-52-4607221224544483.pdf.

  35. Hevel Delivers Bifacial Solar Modules to Coca-Cola Switzerland, 2019. https://www.hevelsolar.com/kz/about/news/khevel-postavila-shveicarskomu-podrazdeleniyu-coca-cola-dvustoronnie-solnechnye-moduli/

  36. Heterojunction PV Modules HVL-360/HJT, HVL-365/HJT, HVL-370/HJT, HVL-375/HJT, HVL-380/HJT, 2020. https://www.hevelsolar.com/loaded/catalog/goods/ab619ce3-8aad-11ea-8106-005056826d7b_Datasheet_360-380_GBS%20(EN).pdf.

Download references

Funding

This study was financially supported by the Russian Foundation for Basic Research within project no. 18-58-41005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Frid.

Additional information

Translated by L. A. Solovyova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frid, S.E., Simonov, V.M., Lisitskaya, N.V. et al. Efficiency of Solar Trackers and Bifacial Photovoltaic Panels for Southern Regions of the Russian Federation and the Republic of Uzbekistan. Appl. Sol. Energy 56, 425–430 (2020). https://doi.org/10.3103/S0003701X20060031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0003701X20060031

Keywords:

Navigation