Skip to main content
Log in

Neural field theory of neural avalanche exponents

  • Original Article
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The power-law exponents of observed size and lifetime distributions of near-critical neural avalanches are calculated from neural field theory using diagrammatic methods. This brings neural avalanches within the ambit of neural field theory, which has also previously explained near-critical 1/f spectra and many other observed features of neural activity. This strengthens the case for near-criticality of the brain and opens the way for these other phenomena to be interrelated with avalanches and their dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abeysuriya RG, Rennie CJ, Robinson PA (2015) Real-time automated tracking of brain states using neural field theory. J Neurosci Meth 253:55

    Article  CAS  Google Scholar 

  • Allegrini P, Paradisi P, Menicucci D, Gemignani A (2010) Fractal complexity in spontaneous EEG metastable-state transitions: New vistas on integrated neural dynamics. Front. Physiol. 1:128

    Article  PubMed  PubMed Central  Google Scholar 

  • Bak P, Tang C, Wiesenfeld K (1987) Self-organized criticality: An explanation for \(1/f\) noise. Phys Rev Lett 59:381

    Article  CAS  PubMed  Google Scholar 

  • Beggs JM, Plenz D (2003) Neural avalanches in neocortical circuits. J Neurosci 23:11167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beggs JM, Plenz D (2004) Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures. J Neurosci 24:5216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brochini L, de Andrade Costa A, Abadi M, Roque AC, Stolfi J, Kinouchi O (2016) Phase transitions and self-organized criticality in networks of stochastic spiking neurons. Sci Rep 6:35831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buszáki G, Mizuseki K (2014) The log-dynamic brain: How skewed distributions affect network operations. Nature Rev Neurosci 15:264

    Article  Google Scholar 

  • Coombes S, beim Graben P, Potthast R, Wright (eds) J (2014) Neural Fields: Theory and Applications, Springer, Berlin

  • Dahmen D, Grün S, Diesmann M, Helias M (2019) Second type of criticality in the brain uncovers rich multiple-neuron dynamics. Proc Nat Acad Sci USA 116:13051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Dominicis C (1978) Dynamics as a substitute for replicas in systems with quenched random impurities. Phys Rev B 18:4913

    Article  Google Scholar 

  • Deco G, Jirsa VK (2012) Ongoing cortical activity at rest: Criticality, multistability, and ghost attractors. J Neurosci 32:3366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deco G, Jirsa VK, Robinson PA, Breakspear M, Friston K (2008) The dynamic brain: From spiking neurons to neural masses and cortical fields. PLoS Comput Biol 4:e1000092

    Article  PubMed  PubMed Central  Google Scholar 

  • Deneve S, Machens CK (2016) Efficient codes and balanced networks. Nat Neurosci 19:375

    Article  CAS  PubMed  Google Scholar 

  • di Santo S, Villegas P, Burioni R, Muñoz MA (2017) Simple unified view of branching process statistics: Random walks in balanced logarithmic potentials. Phys Rev E 95:032115

    Article  PubMed  Google Scholar 

  • Fornito A, Zalesky A, Bullmore ET (2016) Fundamentals of brain network analysis. Elsevier, Amsterdam

    Google Scholar 

  • Galán RF (2008) On how network architecture determines the dominant patterns of spontaneous neural activity. PLoS One 3:e2148

    Article  PubMed  PubMed Central  Google Scholar 

  • Gradshteyn IS, Ryzhik IM (1980) Table of integrals, series, and products. Academic Press, New York, p 678

    Google Scholar 

  • Haimovici A, Tagliazucchi E, Balenzuela P, Chialvo DR (2013) Brain organization into resting state networks emerges at criticality on a model of the human connectome. Phys Rev Lett 110:178101

    Article  PubMed  Google Scholar 

  • Harris TE (1989) The theory of branching processes. Dover, New York

    Google Scholar 

  • Hinrichsen H (2000) Non-equilibrium critical phenomena and phase transitions into absorbing states. Adv Phys 49:815

    Article  CAS  Google Scholar 

  • Jirsa VK, Haken H (1996) Field theory of electromagnetic brain activity. Phys Rev Lett 77:960

    Article  CAS  PubMed  Google Scholar 

  • Kerr CC, Rennie CJ, Robinson PA (2011) Model-based analysis and quantification of age trends in auditory evoked potentials. Clin Neurophysiol 122:134

    Article  CAS  PubMed  Google Scholar 

  • MacLaurin JN, Robinson PA (2019) Determination of brain network connectivity from activity correlations. Phys Rev E 99:042404

    Article  CAS  PubMed  Google Scholar 

  • Miller SR, Yu S, Plenz D (2019) The scale-invariant, temporal profile of neuronal avalanches in relation to cortical \(\gamma \)-oscillations. Sci Rep 9:16403

    Article  PubMed  PubMed Central  Google Scholar 

  • Nunez PL (1995) Neocortical dynamics and human EEG rhythms. Oxford, New York

    Google Scholar 

  • O’Connor SC, Robinson PA (2004) Wavenumber power spectrum of the EEG, ECoG, and ERP. Neurocomput. 58–60:1181

  • Ódor G (2004) Universality classes in nonequilibrium lattice systems. Rev Mod Phys 76:663

    Article  Google Scholar 

  • Olver FWJ, Maximon LC (2010) In: NIST Handbook of Mathematical Functions, Olver FWJ, Lozier DW, Boisvert RF, Clark CW (eds) Cambridge University Press, Cambridge, pp. 248ff

  • Pernice V, Staude B, Cardanobile S, Rotter S (2011) How structure determines correlations in neuronal networks. PLoS Comput Biol 7:e1002059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petermann T, Thiagarajan TC, Lebedev MA, Nicolelis MAL, Chialvo DR, Plenz D (2009) Spontaneous cortical activity in awake monkeys composed of neuronal avalanches. Proc Nat Acad Sci USA 106:15921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plenz D (2012) Neural avalanches and coherence potentials. Eur Phys J Special Topics 205:259

    Article  Google Scholar 

  • Poil SS, Hardstone R, Mansvelder HD, Linkenkaer-Hansen K (2012) Critical-state dynamic of avalanches and oscillations jointly emerge from balanced excitation/inhibition in neuronal networks. J Neurosci 32:9817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rennie CJ, Robinson PA, Wright JJ (2002) Unified neurophysical model of EEG spectra and evoked potentials. Biol Cybern 86:457

    Article  CAS  PubMed  Google Scholar 

  • Robinson PA (2012) Interrelating anatomical, effective, and functional brain connectivity using propagators and neural field theory. Phys Rev E 85:011912

    Article  CAS  Google Scholar 

  • Robinson PA (2017) The balanced and introspective brain. Roy Soc Interface 14:20160994

    Article  Google Scholar 

  • Robinson PA (2019) Physical brain connectomics. Phys Rev E 99:012421

    Article  CAS  PubMed  Google Scholar 

  • Robinson PA, Rennie CJ, Wright JJ (1997) Propagation and stability of waves of electrical activity in the cerebral cortex. Phys Rev E 56:826

    Article  CAS  Google Scholar 

  • Robinson PA, Rennie CJ, Rowe DL (2002) Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Phys Rev E 65:041924

    Article  CAS  Google Scholar 

  • Robinson PA, Sarkar S, Pandejee GM, Henderson JA (2014) Determination of effective brain connectivity from functional connectivity with application to resting state connectivities. Phys Rev E 90:012707

    Article  CAS  Google Scholar 

  • Salinas E, Sejnowski TJ (2000) Impact of correlated synaptic input on output firing rate and variability in simple neuronal models. J Neurosci 20:6193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shriki O, Alstott J, Carver F, Holroyd T, Henson RNA, Smith ML, Coppola R, Bullmore E, Plenz D (2013) Neuronal avalanches in the resting MEG of the human brain. J Neurosci 33:7079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sporns O (2011) Networks of the brain. MIT Press, Cambridge, MA

    Google Scholar 

  • Tagliazucchi E, Balenzuela P, Fraiman D, Chialvo DR (2012) Criticality in large-scale brain fMRI dynamics unveiled by a novel point process analysis. Front Physiol 3:15

    Article  PubMed  PubMed Central  Google Scholar 

  • Touboul J, Ermentrout GB (2011) Finite-size and correlation-induced effects in mean-field dynamics. J Comput Neurosci 31:453

    Article  PubMed  Google Scholar 

  • Yu S, Klaus A, Yang H, Plenz D (2014) Scale-invariant neuronal avalanche dynamics and the cut-off in size distributions. PLoS One 9:e99761

    Article  PubMed  PubMed Central  Google Scholar 

  • Zapperi S, Lauritsen KB, Stanley HE (1995) Self-organized branching processes: A mean-field theory for avalanches. Phys Rev Lett 75:4071

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Robinson.

Additional information

Communicated by Benjamin Lindner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

I thank K. N. Mukta for useful discussions on evoked potentials. This work was supported by the Australian Research Council Center of Excellence Grant CE140100007 and the Australian Research Council Laureate Fellowship Grant FL1401000225.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robinson, P.A. Neural field theory of neural avalanche exponents. Biol Cybern 115, 237–243 (2021). https://doi.org/10.1007/s00422-021-00875-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-021-00875-9

Keywords

Navigation