Skip to main content
Log in

Some measures to impact on the performance of Kohonen self-organizing map

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In the field of unsupervised learning, Self-Organizing Map (SOM) has attracted the attention of many researchers. SOM is a popular algorithm in the area of data clustering; in this paper, new algorithms are developed to find the initial weights, to assign those initial weights to the SOM grid and a new way to determine the number of clusters in the SOM algorithm. Also, a new performance measure MSRI (Modified Semantic Relevant Index) has been introduced for the SOM algorithm. For the class label datasets, the performance criteria like Classification Accuracy (CA), Quantization error (QE) and Convergence time (CT) are used to compare the proposed SOM algorithm with existing SOM algorithms. Here the existing SOM algorithms like Enhanced SOM (ESOM), SOM Particle Swarm Optimization (SOMPSO), ESOMPSO and conventional SOM are used. In addition, MSRI is used to compare the proposed SOM with the existing SOM algorithms. We have also used different image classification datasets to compare our proposed SOM and existing SOM algorithm with CA, QE, CT, and MSRI. For the non-class label dataset, the criteria like QE, CT and MSRI are employed to analyze the performance of proposed SOM with the conventional SOM algorithm. The gene index is also used to validate the number of clusters obtained by the proposed SOM algorithm. It is found that our proposed SOM algorithm has shown better performance in all cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Akinduko AA, Mirkes EM, Gorban AN (2016) SOM: Stochastic initialization versus principal components. Inf Sci (Ny) 364–365:213–221. https://doi.org/10.1016/j.ins.2015.10.013

    Article  Google Scholar 

  2. Apostolakis J (2010) An introduction to data mining. Struct Bond 134:1–35. https://doi.org/10.1007/430_2009_1

    Article  Google Scholar 

  3. Astel A, Tsakovski S, Barbieri P, Simeonov V (2007) Comparison of self-organizing maps classification approach with cluster and principal components analysis for large environmental data sets. Water Res 41:4566–4578. https://doi.org/10.1016/j.watres.2007.06.030

    Article  Google Scholar 

  4. Asuncion A, Newman DJ (2007) UCI Machine Learning Repository: Data Sets. In: Univ. Calif. Irvine Sch. Inf. http://www.ics.uci.edu/~mlearn/MLRepository.html%5Cn, http://archive.ics.uci.edu/ml/datasets.html

  5. Bhatia P (2019) Introduction to data mining. In: Data Mining and Data Warehousing. Cambridge University Press, Cambridge, pp 17–27

  6. Caruana R, Niculescu-Mizil A (2004) Data mining in metric space: An empirical analysis of supervised learning performance criteria. KDD-2004 - Proc Tenth ACM SIGKDD Int Conf Knowl Discov Data Min 69–78. https://doi.org/10.1145/1014052.1014063

  7. Chan CKK, Hsu AL, Tang SL, Halgamuge SK (2008) Using growing self-organising maps to improve the binning process in environmental whole-genome shotgun sequencing. J Biomed Biotechnol 2008:1–10. https://doi.org/10.1155/2008/513701

    Article  Google Scholar 

  8. Chen DR, Chang RF, Huang YL (2000) Breast cancer diagnosis using self-organizing map for sonography. Ultrasound Med Biol 26:405–411. https://doi.org/10.1016/S0301-5629(99)00156-8

    Article  Google Scholar 

  9. Chen N, Chen L, Ma Y, Chen A (2019) Regional disaster risk assessment of China based on self-organizing map: clustering, visualization and ranking. Int J Disaster Risk Reduct 33:196–206. https://doi.org/10.1016/j.ijdrr.2018.10.005

    Article  Google Scholar 

  10. Chow TWS, Rahman MKM (2007) A new image classification technique using tree-structured regional features. Neurocomputing 70:1040–1050. https://doi.org/10.1016/j.neucom.2006.01.033

    Article  Google Scholar 

  11. Cottrell M, Fort JC, Pagès G (1998) Theoretical aspects of the SOM algorithm. Neurocomputing 21:119–138. https://doi.org/10.1016/S0925-2312(98)00034-4

    Article  MATH  Google Scholar 

  12. Créput JC, Hajjam A, Koukam A, Kuhn O (2012) Self-organizing maps in population based metaheuristic to the dynamic vehicle routing problem. J Comb Optim 24:437–458. https://doi.org/10.1007/s10878-011-9400-8

    Article  MathSciNet  MATH  Google Scholar 

  13. Créput J-C, Koukam A, Hajjam A (2013) Self-organizing maps in evolutionary approach for the traveling salesman problem and vehicle routing problem with time windows. J Inf Optim Sci 29:485–511. https://doi.org/10.1080/02522667.2008.10699816

    Article  MATH  Google Scholar 

  14. Du KL (2010) Clustering: a neural network approach. Neural Netw 23:89–107. https://doi.org/10.1016/j.neunet.2009.08.007

    Article  MATH  Google Scholar 

  15. Fisher RA (1954) The use of multiple measurements in taxonomic problems. Ann Eugenics 7:179–188

    Article  Google Scholar 

  16. Fisher RA (2011) The use of multiple measurements in taxonomic problems. Ann Eugenics 7:179–188. https://doi.org/10.1111/j.1469-1809.1936.tb02137.x

    Article  Google Scholar 

  17. Frank A, Asuncion A (2019) UCI machine learning repository: about. In: Univ Calif Irvine

  18. Ghaziri H, Osman IH (2006) Self-organizing feature maps for the vehicle routing problem with backhauls. J Sched 9:97–114. https://doi.org/10.1007/s10951-006-6774-z

    Article  MATH  Google Scholar 

  19. ​Han J, Kamber M, Pei J (2012) Data mining: concepts and techniques. The Morgan Kaufmann Series in Data Management Systems 5(4):83–124

  20. Hartono P, Hollensen P, Trappenberg T (2015) Learning-regulated context relevant topographical map. IEEE Trans Neural Networks Learn Syst 26:2323–2335. https://doi.org/10.1109/TNNLS.2014.2379275 

    Article  MathSciNet  Google Scholar 

  21. Hsu AL, Saeed I, Halgamuge SK (2009) Dynamic self-organising maps: theory, methods and applications. Stud Comput Intell 201:363–379. https://doi.org/10.1007/978-3-642-01082-8_14

    Article  Google Scholar 

  22. Kaskiy S, Kangas J, Kohonen TK (1998) Bibliography of self-organizing map (SOM) papers: 1981-1997. Neural Comput Surv 10.1.1.5.7856

  23. Khan A, Jaffar MA, Choi TS (2013) SOM and fuzzy based color image segmentation. Multimed Tools Appl 64:331–344. https://doi.org/10.1007/s11042-012-1003-6

    Article  Google Scholar 

  24. Khu ST, Madsen H, Di Pierro F (2008) Incorporating multiple observations for distributed hydrologic model calibration: an approach using a multi-objective evolutionary algorithm and clustering. Adv Water Resour 31:1387–1398. https://doi.org/10.1016/j.advwatres.2008.07.011

    Article  Google Scholar 

  25. Kita E, Kan S, Fei Z (2010) Investigation of self-organizing map for genetic algorithm. Adv Eng Softw 41:148–153. https://doi.org/10.1016/j.advengsoft.2009.09.011

    Article  MATH  Google Scholar 

  26. Kohonen T (1997) Exploration of very large databases by self-organizing maps. In: IEEE International Conference on Neural Networks - Conference Proceedings

  27. Kohonen T (1998) The self-organizing map. Neurocomputing 21:1–6. https://doi.org/10.1016/S0925-2312(98)00030-7

    Article  MATH  Google Scholar 

  28. Kohonen T (2013) Essentials of the self-organizing map. Neural Netw 37:52–65. https://doi.org/10.1016/j.neunet.2012.09.018

    Article  Google Scholar 

  29. Kohonen T, Oja E, Simula O, Visa A, Kangas J (1996) Engineering applications of the self-organizing map. Proc IEEE 84:1358–1383. https://doi.org/10.1109/5.537105

    Article  Google Scholar 

  30. Lapidot I, Guterman H, Cohen A (2002) Unsupervised speaker recognition based on competition between self-organizing maps. IEEE Trans Neural Netw 13:877–887. https://doi.org/10.1109/TNN.2002.1021888

    Article  Google Scholar 

  31. Lee M, Song TG, Lee JH (2020) Heartbeat classification using local transform pattern feature and hybrid neural fuzzy-logic system based on self-organizing map Biomed Sig Process Control 57:. https://doi.org/10.1016/j.bspc.2019.101690

  32. Lokesh S, Malarvizhi Kumar P, Ramya Devi M, Parthasarathy P, Gokulnath C (2019) An automatic Tamil speech recognition system by using bidirectional recurrent neural network with self-organizing map. Neural Comput & Applic 31:1521–1531. https://doi.org/10.1007/s00521-018-3466-5

    Article  Google Scholar 

  33. Mallick P, Ghosh O, Seth P, Ghosh A (2019) Kohonen’s self-organizing map optimizing prediction of gene dependency for cancer mediating biomarkers. In: Advances in Intelligent Systems and Computing. pp. 863–870

  34. Murtagh F (1995) Interpreting the Kohonen self-organizing feature map using contiguity-constrained clustering. Pattern Recogn Lett 16:399–408. https://doi.org/10.1016/0167-8655(94)00113-H

    Article  Google Scholar 

  35. Nawaratne R, Adikari A, Alahakoon D, de Silva D, Chilamkurti N (2020) Recurrent self-structuring machine learning for video processing using multi-stream hierarchical growing self-organizing maps. Multimed Tools Appl 79:16299–16317. https://doi.org/10.1007/s11042-020-08886-7

    Article  Google Scholar 

  36. Neagoe VE, Ropot AD (2002) Concurrent self-organizing maps for pattern classification. In: proceedings - 1st IEEE international conference on cognitive informatics, ICCI 2002. Pp 304–312

  37. Ozcalici M, Bumin M (2020) An integrated multi-criteria decision making model with Self-Organizing Maps for the assessment of the performance of publicly traded banks in Borsa Istanbul Appl Soft Comput J 90:. https://doi.org/10.1016/j.asoc.2020.106166

  38. Park YS, Tison J, Lek S, Giraudel JL, Coste M, Delmas F (2006) Application of a self-organizing map to select representative species in multivariate analysis: a case study determining diatom distribution patterns across France. Ecol Inform 1:247–257. https://doi.org/10.1016/j.ecoinf.2006.03.005

    Article  Google Scholar 

  39. Petrilis D, Halatsis C (2008) Two-level clustering of web sites using self-organizing maps. Neural Process Lett 27:85–95. https://doi.org/10.1007/s11063-007-9061-x

    Article  Google Scholar 

  40. Pölzlbauer G, Rauber A, Dittenbach M (2010) Advanced visualization techniques for self-organizing maps with graph-based methods. Pp 75–80

  41. Ressom H, Wang D, Natarajan P (2003) Adaptive double self-organizing maps for clustering gene expression profiles. Neural Netw 16:633–640. https://doi.org/10.1016/S0893-6080(03)00102-3

  42. Ressom H, Wang D, Natarajan P (2015) Clustering gene expression data using adaptive double self-organizing map. Physiol Genomics 14:35–46. https://doi.org/10.1152/physiolgenomics.00138.2002

    Article  Google Scholar 

  43. Ritter G (2018) Robust cluster analysis and variable selection

  44. Sakkari M, Zaied M (2020) A convolutional deep self-organizing map feature extraction for machine learning. Multimed Tools Appl 79:19451–19470. https://doi.org/10.1007/s11042-020-08822-9

    Article  Google Scholar 

  45. Santos WP, Souza RE, Silva AFD, Santos Filho PB (2008) Evaluation of Alzheimer’s disease by analysis of MR images using multilayer perceptrons and committee machines. Comput Med Imaging Graph 32:17–21. https://doi.org/10.1016/j.compmedimag.2007.08.004

    Article  Google Scholar 

  46. Sebban M, Nock R, Lallich S et al (2002) Stopping criterion for boosting-based data reduction techniques: from binary to multiclass problems. J Mach Learn Res 3:863–885

    MathSciNet  MATH  Google Scholar 

  47. Shamsuddin SM (2011) Hasan S (2011) multistrategy self-organizing map learning for classification problems. Comput Intell Neurosci 2011:1–11. https://doi.org/10.1155/2011/121787

    Article  Google Scholar 

  48. Shieh SL, Liao IE (2012) A new approach for data clustering and visualization using self-organizing maps. Expert Syst Appl 39:11924–11933. https://doi.org/10.1016/j.eswa.2012.02.181

    Article  Google Scholar 

  49. Sun L, Lin TC, Huang HC, et al (2007) An optimized approach on applying genetic algorithm to adaptive cluster validity index. In: proceedings - 3rd international conference on intelligent information hiding and multimedia signal processing, IIHMSP 2007. Pp 582–585

  50. Uysal I, Güvenir HA (2004) Instance-based regression by partitioning feature projections. Appl Intell 21:57–79. https://doi.org/10.1023/B:APIN.0000027767.87895.b2

    Article  MATH  Google Scholar 

  51. Valova I, Georgiev G, Gueorguieva N, Olson J (2013) Initialization issues in self-organizing maps. Procedia Computer Science 20:52–57

  52. Vesanto J (2000) Neural network tool for data mining: SOM toolbox. In: proceedings of symposium on tool environments and development methods for intelligent systems (TOOLMET 2000). pp 184–196. Web. < http://cda.psych.uiuc.edu/martinez/edatoolbox/Docs/toolmet2000.pdf>

  53. Vesanto J, Himberg J, Alhoniemi E, Parhankangas J (2000) SOM toolbox for Matlab 5, report A57. Helsinki Univ Technol neural networks res Centre, Espoo, Finl. Web. < http://www.cis.hut.fi/somtoolbox/package/papers/techrep.pdf>

  54. Wang L, Chen Y, Jiang H, Yao J (2020) Imbalanced credit risk evaluation based on multiple sampling, multiple kernel fuzzy self-organizing map and local accuracy ensemble. Applied Soft Computing 91:106262.  https://doi.org/10.1016/j.asoc.2020.106262

  55. Wickramasinghe C. S, Amarasinghe K, Manic M (2019) Deep self-organizing maps for unsupervised image classification. IEEE Trans Ind Inf 15:5837–5845. https://doi.org/10.1109/TII.2019.2906083

    Article  Google Scholar 

  56. Wu, Y, Takatsuka, M. (2006) Spherical self-organizing map using efficient indexed geodesic data structure. Neural Netw 19:900–910. https://doi.org/10.1016/j.neunet.2006.05.021

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Punniyamoorthy Murugesan.

Ethics declarations

Conflict of interest

The authors declare that we have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murugesan, V.P., Murugesan, P. Some measures to impact on the performance of Kohonen self-organizing map. Multimed Tools Appl 80, 26381–26409 (2021). https://doi.org/10.1007/s11042-021-10912-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-10912-1

Keywords

Navigation