Skip to main content
Log in

Understanding the Effects of CoAl2O4 Inoculant Additions on Microstructure in Additively Manufactured Inconel 718 Processed Via Selective Laser Melting

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of varying amounts of CoAl2O4 inoculant ranging from 0 to 2 wt pct on the microstructure evolution of Inconel 718(IN718) fabricated by selective laser melting (SLM) was evaluated. Characterization of the as-built microstructure revealed that addition of CoAl2O4 resulted in a modest degree of grain refinement with a slight increase in microstructural anisotropy. Increasing the total CoAl2O4 content beyond 0.2 wt pct resulted in severe agglomeration of the non-metallic particles and the formation of slag inclusions measuring up to 100 μm in size present in the as-built microstructure. In addition to large agglomerates, the inoculant was chemically reduced to form a fine dispersion of submicron-sized Al2O3 particles throughout the IN718 matrix. The fine dispersion of oxides significantly hindered grain recrystallization during the post-fabrication heat treatment due to a Zener pinning effect. The findings from this study indicate in order to effectively utilize CoAl2O4 as a grain refining inoculant for additive manufacturing, the process parameters need to be optimized to avoid agglomeration of the non-metallic particles and other process-related defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. 1 T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, and W. Zhang: Progress in Materials Science, 2018, vol. 92, pp. 112–224.

    Article  CAS  Google Scholar 

  2. 2 T.M. Pollock and S. Tin: Journal of Propulsion and Power, 2006, vol. 22, pp. 361–74.

    Article  CAS  Google Scholar 

  3. 3 X. Wang and K. Chou: JOM, 2017, vol. 69, pp. 402–8.

    Article  CAS  Google Scholar 

  4. 4 M. Sadowski, L. Ladani, W. Brindley, and J. Romano: Additive Manufacturing, 2016, vol. 11, pp. 60–70.

    CAS  Google Scholar 

  5. 5 K.N. Amato, S.M. Gaytan, L.E. Murr, E. Martinez, P.W. Shindo, J. Hernandez, S. Collins, and F. Medina: Acta Materialia, 2012, vol. 60, pp. 2229–39.

    Article  CAS  Google Scholar 

  6. 6 P. Tao, H. Li, B. Huang, Q. Hu, S. Gong, and Q. Xu: Vacuum, 2019, vol. 159, pp. 382–90.

    Article  CAS  Google Scholar 

  7. 7 S. Das: Advanced Engineering Materials, 2003, vol. 5, pp. 701–11.

    Article  CAS  Google Scholar 

  8. 8 S. Kou: Welding Metallurgy, 2nd ed., Wiley-Interscience, Hoboken, N.J, 2003. pp. 170-187

    Google Scholar 

  9. 9 F. Yan, W. Xiong, and E. Faierson: Materials, 2017, vol. 10, pp. 1260.

    Article  CAS  Google Scholar 

  10. 10 M.J. Bermingham, D.H. StJohn, J. Krynen, S. Tedman-Jones, and M.S. Dargusch: Acta Materialia, 2019, vol. 168, pp. 261–74.

    Article  CAS  Google Scholar 

  11. 11 J.A. Spittle: International Materials Reviews, 2006, vol. 51, pp. 247–69.

    Article  CAS  Google Scholar 

  12. 12 W. Kurz, C. Bezençon, and M. Gäumann: Science and Technology of Advanced Materials, 2001, vol. 2, pp. 185–91.

    Article  CAS  Google Scholar 

  13. 13 J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, and T.M. Pollock: Nature, 2017, vol. 549, pp. 365–9.

    Article  CAS  Google Scholar 

  14. 14 P.C. Collins, D.A. Brice, P. Samimi, I. Ghamarian, and H.L. Fraser: Annual Review of Materials Research, 2016, vol. 46, pp. 63–91.

    Article  CAS  Google Scholar 

  15. 15 I.-T. Ho, Y.-T. Chen, A.-C. Yeh, C.-P. Chen, and K.-K. Jen: Additive Manufacturing, 2018, vol. 21, pp. 465–71.

    Article  CAS  Google Scholar 

  16. 16 I.-T. Ho, T.-H. Hsu, Y.-J. Chang, C.-W. Li, K.-C. Chang, S. Tin, K. Kakehi, and A.-C. Yeh: Additive Manufacturing, 2020, vol. 35, pp. 101328.

    Article  CAS  Google Scholar 

  17. 17 F. Jian and Y. Bin: High Temperature Alloys for Gas Turbines 1982, 1982, pp. 987-97

    Google Scholar 

  18. 18 M. Zielińska, K. Kubiak, and J. Sieniawski: Journal of Achievements in Materials and Manufacturing Engineering, 2009, vol. 35, pp. 55-62.

    Google Scholar 

  19. 19 F. Binczyk and J. Śleziona: Archives of Foundry Engineering, 2010, vol. 10, pp. 195–8.

    Google Scholar 

  20. 20 F. Binczyk, J. Śleziona, and P. Gradoń: Composites, 2011, vol. 1, pp. 49–55.

    Google Scholar 

  21. 21 F. Binczyk: Archives of Foundry Engineering, 2009, vol. 9, pp. 105–8.

    CAS  Google Scholar 

  22. 22 B.L. Bramfitt: Metallurgical Transactions, 1970, vol. 1, pp. 1987–95.

    Article  CAS  Google Scholar 

  23. 23 D. Qiu, M.-X. Zhang, H.-M. Fu, P.M. Kelly, and J.A. Taylor: Philosophical Magazine Letters, 2007, vol. 87, pp. 505–14.

    Article  Google Scholar 

  24. Y. Xiong, X. YingWei, J. Du, A. Yang, L. Liu, and D. Zeng: Metallurgical and Materials Transactions A, 2004, vol. 35, pp. 2111–4.

    Article  Google Scholar 

  25. 25 M. Li, J. Li, D. Qiu, Q. Zheng, G. Wang, and M.-X. Zhang: Philosophical Magazine, 2016, vol. 96, pp. 1556–78.

    Article  CAS  Google Scholar 

  26. 26 C. Hong, D. Gu, D. Dai, A. Gasser, A. Weisheit, I. Kelbassa, M. Zhong, and R. Poprawe: Optics & Laser Technology, 2013, vol. 54, pp. 98–109.

    Article  CAS  Google Scholar 

  27. 27 P. Yuan and D. Gu: J. Phys. D: Appl. Phys., 2015, vol. 48, pp. 035303.

    Article  CAS  Google Scholar 

  28. 28 A.L. Greer, A.M. Bunn, A. Tronche, P.V. Evans, and D.J. Bristow: Acta Materialia, 2000, vol. 48, pp. 2823–35.

    Article  CAS  Google Scholar 

  29. 29 A.L. Greer, P.S. Cooper, M.W. Meredith, W. Schneider, P. Schumacher, J.A. Spittle, and A. Tronche: Advanced Engineering Materials, 2003, vol. 5, pp. 81–91.

    Article  CAS  Google Scholar 

  30. 30 Z. Liu: Metallurgical and Materials Transactions A, 2017, vol. 48, pp. 4755–76.

    Article  CAS  Google Scholar 

  31. 31 C. Ma, L. Chen, C. Cao, and X. Li: Nature Communications, 2017, vol. 8, pp.1-7.

    Article  CAS  Google Scholar 

  32. 32 C. Ma, J. Zhao, C. Cao, T.C. Lin, and X. Li: Journal of Manufacturing Science and Engineering, 2016, vol. 138, pp. 121002

    Article  Google Scholar 

  33. 33 R. Prasher, D. Song, J. Wang, and P. Phelan: Appl. Phys. Lett., 2006, vol. 89, p. 133108.

    Article  CAS  Google Scholar 

  34. 34 I.M. Mahbubul, R. Saidur, and M.A. Amalina: International Journal of Heat and Mass Transfer, 2012, vol. 55, pp. 874–85.

    Article  CAS  Google Scholar 

  35. 35 D.H. StJohn, M. Qian, M.A. Easton, and P. Cao: Acta Materialia, 2011, vol. 59, pp. 4907–21.

    Article  CAS  Google Scholar 

  36. D.H. StJohn, S.D. McDonald, M.J. Bermingham, S. Mereddy, A. Prasad, and M. Dargusch: KEM, 2018, vol. 770, pp. 155–64.

    Article  Google Scholar 

  37. 37 M. Bermingham, D. StJohn, M. Easton, L. Yuan, and M. Dargusch: JOM, 2020, vol. 72, pp. 1065–73.

    Article  Google Scholar 

  38. 38 D. Dai and D. Gu: International Journal of Machine Tools and Manufacture, 2016, vol. 100, pp. 14–24.

    Article  Google Scholar 

  39. 39 P. Yuan, D. Gu, and D. Dai: Materials & Design, 2015, vol. 82, pp. 46–55.

    Article  CAS  Google Scholar 

  40. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, Elsevier, Amsterdam; 2012. pp. 343-48

    Google Scholar 

  41. 41 A.O.F. Hayama, H.R.Z. Sandim, J.F.C. Lins, M.F. Hupalo, and A.F. Padilha: Materials Science and Engineering: A, 2004, vol. 371, pp. 198–209.

    Article  CAS  Google Scholar 

  42. 42 H.R.Z. Sandim, A.O.F. Hayama, and D. Raabe:Materials Science and Engineering:A, 2006, vol. 430, pp. 172-78.

    Article  CAS  Google Scholar 

  43. 43 Z. Oksiuta, P. Kozikowski, M. Lewandowska, M. Ohnuma, K. Suresh, and K.J. Kurzydlowski: J Mater Sci, 2013, vol. 48, pp. 4620–5.

    Article  CAS  Google Scholar 

  44. 44 F.J. Humphreys: Acta Materialia, 1997, vol. 45, pp. 5031–9.

    Article  CAS  Google Scholar 

  45. 45 S. Sui, H. Tan, J. Chen, C. Zhong, Z. Li, W. Fan, and W. Huang: Acta Materialia, 2019,vol. 164, pp. 413-27.

    Article  CAS  Google Scholar 

  46. 46 W.M. Tucho, P. Cuvillier, A. Sjolyst-Kverneland, and V. Hansen: Materials Science and Engineering: A, 2017, vol. 689, pp. 220–32.

    Article  CAS  Google Scholar 

  47. 47 N. Kouraytem, J. Varga, B. Amin-Ahmadi, H. Mirmohammad, R.A. Chanut, A.D. Spear, and O.T. Kingstedt: Materials & Design, 2021, vol. 198, pp. 109228.

    Article  CAS  Google Scholar 

  48. 48 W.M. Tucho and V. Hansen: J Mater Sci, 2019, vol. 54, pp. 823–39.

    Article  CAS  Google Scholar 

  49. 49 E. Chlebus, K. Gruber, B. Kuźnicka, J. Kurzac, and T. Kurzynowski: Materials Science and Engineering: A, 2015, vol. 639, pp. 647–55.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation CMMI # 1663068 and the Ministry of Science and Technology (MOST), Taiwan MOST108-2218-E007-009

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhruv Tiparti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 18, 2020, accepted March 18, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiparti, D., Ho, IT., Chang, KC. et al. Understanding the Effects of CoAl2O4 Inoculant Additions on Microstructure in Additively Manufactured Inconel 718 Processed Via Selective Laser Melting. Metall Mater Trans A 52, 2630–2641 (2021). https://doi.org/10.1007/s11661-021-06255-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06255-z

Navigation