Skip to main content
Log in

Evolution of Texture and Deformation Mechanisms During Repeated Deformation and Heat Treating Cycles of U-6Nb

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The evolution of the crystallographic texture and lattice strain of uranium 6-weight percent niobium alloy samples are tracked during multiple deformation and heat treating cycles in an effort to understand and control the mechanical properties of the material following thermo-mechanical processing. The heavily twinned microstructure and low-symmetry crystal structure of U-6Nb result in multiple sequential active deformation mechanisms associated with distinctive deformation textures in strain ranges from 0-0.15 true strain. It is found that heating into the high-temperature γ-phase erases much of the texture formed during deformation at room temperature in the α′′-phase and resets the active deformation mechanisms. Through a small number of deformation/heat treat cycles to moderate strains, i.e., ~ 0.13 per cycle, the flow strength of the material is recovered to its original value. However, on the fourth such cycle, a reduction of strength is observed and the sample failed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

(adapted from[16]). (b)-(d) Same for material pre-strained to 0.028, 0.057, and 0.11, respectively, and heat treated. The solid lines in (b)-(d) represent the data collected on the as-received material for comparison

Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

adapted from [16]). (b)-(d) same for sample S7 during 2nd, 3rd, and 4th deformation cycles. The solid lines in (b)-(d) represent the data collected on the as-received material for comparison

Similar content being viewed by others

References

  1. [1] B.W. Howlett, J. Nucl. Mater., 1970, vol. 35, pp. 278-292.

    Article  CAS  Google Scholar 

  2. [2] K. Tangri, D.K. Chaudhuri, J. Nucl. Mater., 1965, vol. 15, pp. 278-287.

    Article  CAS  Google Scholar 

  3. [3] M. Anagnostidis, M. Colombie, H. Monti, J. Nucl. Mater., 1964, vol. 26, pp. 67-76.

    Article  Google Scholar 

  4. Y. Takahashi, M. Yamawaki, K. Yamamoto, J. Nucl. Mater., 1988, vol. 154, pp. 141-144.

    Article  CAS  Google Scholar 

  5. J.G. Speer, D.V. Edmonds, Acta Metall., 1988, vol. 36, pp. 1015-1033.

    Article  CAS  Google Scholar 

  6. [6] E. Kahana, M. Talianker, A. Landau, J. Nucl. Mater., 1997, vol. 246, pp. 144-149.

    Article  CAS  Google Scholar 

  7. K.H. Eckelmeyer, A.D. Romig, L.J. Weirick, Metall. Trans. A, 1984, vol. 15, pp. 1319-30.

    Article  CAS  Google Scholar 

  8. J. Koike, M.E. Kassner, R.E. Tate, R.S. Rosen, Journal of Phase Equilibria, 1998, vol. 19, pp. 253-60.

    Article  CAS  Google Scholar 

  9. R.D. Field, D.J. Thoma, P.S. Dunn, D.W. Brown, C.M. Cady, Philos. Mag. A, 2001, vol. 81, pp. 1691-1724.

    Article  CAS  Google Scholar 

  10. R.A. Vandermeer, Acta Metall., 1980, vol. 28, pp. 383-393.

    Article  CAS  Google Scholar 

  11. R.J. Jackson (1970). Report RFP-1535. Rocky Flats Division, The Dow Chemical Company.

  12. [12] H.L. Yakel, in: J.J. Burke, D.A. Colling, A.E. Gorum, J. Greenspan (Eds.) Physical Metallugy of Uranium Alloys :Third Army Materials Technology Confernece, Brook Hill Publishing Company, Vail, Colorado, 1974, pp. 259-307.

    Google Scholar 

  13. [13] J. Lehmann, R.F. Hills, J. Nucl. Mater., 1960, vol. 2, pp. 261-268.

    Article  CAS  Google Scholar 

  14. [14] B.A. Hatt, J. Nucl. Mater., 1966, vol. 19, pp. 133-141.

    Article  CAS  Google Scholar 

  15. D.W. Brown, M.A.M. Bourke, P.S. Dunn, R.D. Field, M.G. Stout, D.J. Thoma, Metall. Mater. Trans. A, 2001, vol. 32, pp. 2219-28.

    Article  CAS  Google Scholar 

  16. C.N. Tupper, D.W. Brown, R.D. Field, T.A. Sisneros, B. Clausen, Metall. Mater. Trans. A, 2012, vol. 43A, pp. 520-30.

    Article  CAS  Google Scholar 

  17. R.A. Vandermeer, J.C. Ogle, W.B. Snyder, Scr. Metall., 1978, vol. 12, pp. 243-48

    Article  CAS  Google Scholar 

  18. R.A. Vandermeer, J.C. Ogle, W.G. Northcutt, Metall. Trans. A, 1981, vol. 12, pp. 733-741.

    Article  Google Scholar 

  19. [19] D.A. Carpenter, R.A. Vandermeer, Adv. X-Ray Anal., 1985, vol. 26, pp. 307-312.

    Google Scholar 

  20. [20] D.W. Brown, M.A.M. Bourke, P.S. Dunn, R.D. Field, M.G. Stout, D.F. Teter, D.J. Thoma, S.C. Vogel, in: S. Bhatia, P. Khalifah, D. Pochan, P. Radaelli (Eds.) Materials Research Society Fall Meeting, Materials Research Society, Boston, MA, 2005, pp. 205-210.

    Google Scholar 

  21. [21] A.S. Sastri, M.J. Marcinkowski, Metallurgical Society of American Institute of Mining, Metallurgical and Petroleum Engineers–Transactions, 1968, vol. 242, pp. 2393-2398.

    CAS  Google Scholar 

  22. [22] R.V. Krishnan, L.C. Brown, Metall. Trans., 1973, vol. 4, pp. 423-429.

    Article  CAS  Google Scholar 

  23. [23] T.A. Schroeder, I. Cornelis, C.M. Wayman, Metall. Trans. A, 1976, vol. 7A, pp. 535-553.

    Article  CAS  Google Scholar 

  24. D.H. Wood, J.W. Dini, H.R. Johnson, J. Nucl. Mater., 1983, vol. 114, pp. 199-207.

    Article  CAS  Google Scholar 

  25. R.E. Hackenberg, D.W. Brown, A.J. Clarke, L.B. Dauelsberg, R.D. Field, W.L. Hults, A.M. Kelly, M.F. Lopez, D.F. Teter, D.J. Thoma, T.J. Tucker, C.J. Vigil, H.M. Volz (2007). Report LA-14327. Los Alamos National Lab.

  26. [26] R.E. Hackenberg, G.M. Hemphill, R.T. Forsyth, P.A. Papin, A.M. Kelly, T.J. Tucker, R.M. Aikin, Jr., D.J. Alexander, M.F. Lopez, A.J. Clarke, Mater. Sci. Forum, 2017, vol. 879, pp. 665-670.

    Article  Google Scholar 

  27. [27] M.A.M. Bourke, D.C. Dunand, E. Ustundag, Appl. Phys. A, 2002, vol. A74, pp. S1707-S1709.

    Article  CAS  Google Scholar 

  28. N. Shi, M.A.M. Bourke, J.A. Roberts, J.E. Allison, Metall. Mater. Trans. A, 1997, vol. 28, pp. 2741-53.

    Article  CAS  Google Scholar 

  29. H. Wang, B. Clausen, C.N. Tome, P.D. Wu, Acta Mater., 2013, vol. 61, pp. 1179-88.

    Article  CAS  Google Scholar 

  30. S.C. Vogel, C. Hartig, L. Lutterotti, R.B. Von Dreele, H.R. Wenk, D.J. Williams, Powder Diffr., 2004, vol. 19, pp. 65-68.

    Article  CAS  Google Scholar 

  31. [31] S. Takajo, S.C. Vogel, J. App. Crys., 2018, vol. 51, pp. 895-900.

    Article  CAS  Google Scholar 

  32. R.J. Jackson, D.V. Miley, ASM Trans, 1968, vol. 61, pp. 336-43.

    CAS  Google Scholar 

  33. A.C. Larson, R.B. Von Dreele (1986). Los Alamos National Lab.

  34. [34] P.W. Stephens, J. App. Crys., 1999, vol. 32, pp. 281-289.

    Article  CAS  Google Scholar 

  35. [35] R.B. Von Dreele, J. App. Crys., 1997, vol. 30, pp. 517-525.

    Article  Google Scholar 

  36. R.E. Hackenberg, R.M. Aikin, J.A. Balog, B.L. Bingham, R. Casey, A. Casteel, I. Cordova, R. Forsyth, F.G. Garcia, D. Guidry, D.L. Hammon, W.L. Hults, D.R. Korzekwa, A.M. Kelly, M.W. Kolby, K.A. Lao, J.C. Lashley, M.F. Lopez, R.J. McCabe, D.E. Nye, P.A. Papin, S.W. Quintana, J.L. Smith, D.F. Teter, D.J. Thoma, T. Tucker, P.K. Tubesing, R.R. Trujillo, C.J. Vigil, H.M. Volz (2007). Los Alamos National Laboratory.

  37. D.W. Brown, M.A.M. Bourke, R.D. Field, W.L. Hults, D.F. Teter, D.J. Thoma, S.C. Vogel, Mater. Sci. Eng. A 2006, vol. 421, pp. 15-21.

    Article  CAS  Google Scholar 

  38. B. Clausen, C.N. Tome, D.W. Brown, S.R. Agnew, Acta Mater., 2008, vol. 56, pp. 2456- 2468.

    Article  CAS  Google Scholar 

  39. A.J. Clarke, D.W. Brown, B. Clausen, T.A. Sisneros, R.D. Field, Metall. Mater. Trans. A, 2020, vol. 51A, pp. 1614-24.

    Article  CAS  Google Scholar 

  40. [40] C.M. Cady, G.T. Gray, III, S.R. Chen, R.D. Field, D.R. Korzekwa, R.S. Hixson, M.F. Lopez, J. Phys. IV, 2006, vol. 134, pp. 203-208.

    CAS  Google Scholar 

  41. A.J. Sunwoo, D.S. Hiromoto, J. Nucl. Mater., 2004, vol. 327, pp. 37-45.

    Article  CAS  Google Scholar 

  42. R.D. Field, D.W. Brown, D.J. Thoma, Phil. Mag., 2005, vol. 85, pp. 1441-57.

    Article  CAS  Google Scholar 

  43. B. Clausen, M. Bourke, Metall. Mater. Trans. A, 2001, vol. 32A, pp. 691-694.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work has benefitted from the use of the Los Alamos Neutron Science Center (LANSCE) at Los Alamos National Laboratory. Los Alamos National Laboratory is operated by Triad National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under contract number 89233218NCA000001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald W. Brown.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted 25 June 2020; accepted 14 February 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, D.W., Clarke, K.D., Clausen, B. et al. Evolution of Texture and Deformation Mechanisms During Repeated Deformation and Heat Treating Cycles of U-6Nb. Metall Mater Trans A 52, 2195–2207 (2021). https://doi.org/10.1007/s11661-021-06210-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06210-y

Navigation