Skip to main content
Log in

The Ductility Variation of High-Pressure Die-Cast AE44 Alloy: The Role of Inhomogeneous Microstructure

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the study, the through-thickness microstructure and its effects on the ductility and strain heterogeneity in high-pressure die-cast AE44 alloy were investigated. The results show that the studied alloy had a gradient microstructure, where two fine-grained skins sandwiched a core with coarse externally solidified crystals (ESCs) embedded in fine grains. In the core, where porosity concentrated, the ultra-coarse ESCs with sizes up to 600 μm were observed. A great amount of Al11RE3 phase, as the predominant intermetallic phase, was distributed in homogeneously through the thickness. High-resolution digital image correlation (DIC) measurement coupled with electron backscatter diffraction (EBSD) was employed to reveal the deformation inhomogeneity and its root cause. It was found that considerable strain localization mainly appeared in the ultra-coarse ESCs with soft orientation for basal slip and the regions where porosity appeared. Unlike the yield strengths and ultimate tensile strengths, the elongations showed a significant variation. Not only defects but also the ultra-coarse ESCs were the primary factors responsible for the variation in ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. S.G. Lee, G.R. Patel, A.M. Gokhale, A. Sreeranganathan, and M.F. Horstemeyer: Mater. Sci. Eng. A, 2006, vol. 427, pp. 13-30.

    Google Scholar 

  2. X.B. Li, W.B. Yu, J.S. Wang, and S.M. Xiong: Mater. Sci. Eng. A, 2018, vol. 736, pp. 219-27.

    Article  CAS  Google Scholar 

  3. X.X. Dong, X.Z. Zhu, and S.X. Ji: J. Mater. Process. Technol., 2019, vol. 266, pp. 105-113.

    Article  CAS  Google Scholar 

  4. J.D. Zhu, S.L. Cockcroft, and D.M. Maijer: Metall, Mater. Trans. A, 2006, vol. 37, pp. 1075-85.

    Article  Google Scholar 

  5. E. Deda, T.D. Berman, and J.E. Allison: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 1999-14.

    Article  CAS  Google Scholar 

  6. G. Timelli, and A. Fabrizi: Metall, Mater. Trans. A, 2014, vol. 45, pp. 5486-98.

    Article  CAS  Google Scholar 

  7. S.M. Zhu, C. Wong, M.J. Stylesc, T.B. Abbott, J.F. Nie, and M.A. Easton: Mater. Charact, 2019, vol.156, pp. 109839.

    Article  CAS  Google Scholar 

  8. S.M. Zhu, J.F. Nie, M.A. Gibson, M.A. Easton, and P. Bakke: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 4137-44.

    Article  CAS  Google Scholar 

  9. Y.F. Zhang, J. Zheng, Y.T. Xia, H.G. Shou, W. Tan, and Q. Liu: Mater. Sci. Eng. A, 2019, vol. 772, pp. 138781.

    Article  CAS  Google Scholar 

  10. C.D. Lee, and K.S. Shin: Mater. Sci. Eng. A, 2014, vol. 599, pp. 223-32.

    Article  CAS  Google Scholar 

  11. J. Elambasseril, S.L. Lu, Y.P. Ning, N. Liu, J. Wang, M. Brandt, H.P. Tang, and M. Qian: Mater. Sci. Eng. A, 2019, vol. 761, 138031.

    Article  CAS  Google Scholar 

  12. E. Lordan, J. Lazaro-Nebreda, Y. Zhang, K. Dou, P. Blake, and Z. Fan: Mater. Sci. Eng. A, 2020, vol. 778, pp. 139107.

    Article  CAS  Google Scholar 

  13. C.M. Laursen, S.A. DeJong, S.M. Dickens, A.N. Exil, D.F. Susan, and J. D. Carroll: Mater. Sci. Eng. A, 2020, vol. 795, pp. 139922.

    Article  CAS  Google Scholar 

  14. B. Zhou, D.H. Meng, D. Wu, J.F. Tang, R.S. Chen, P.J. Li, and E-H. Han: Mater. Charact., 2019, vol. 152, pp. 204-12.

    Article  CAS  Google Scholar 

  15. L. Wang, N. Limodin, A.E. Bartali, J.F. Witz, R. Seghir, J.Y. Buffiere, and E. Charkaluk: Mater. Sci. Eng. A, 2016, vol. 673, pp. 362-72.

    Article  CAS  Google Scholar 

  16. S. Biswas, F. Sket, M.Chiumenti, I. Gutiérrez-Urrutia, J.M. MolinaAldareguía, and M. T. Pérez-Prado: Metall, Mater. Trans. A, 2013, vol. 44, pp. 4391-4403.

    Article  CAS  Google Scholar 

  17. S.G. Lee, G.R. Patel, A.M. Gokhale, A. Sreeranganathan, and M.F. Horstemeyer: Scr. Metall., 2005, vol. 53, pp. 851-56.

    Article  CAS  Google Scholar 

  18. M. Easton, T.B. Abbott, and C.H. Caceres: Mater. Sci. Forum, 2003, vol. 419, pp. 147-52.

    Article  Google Scholar 

  19. F. Czerwinski, A. Zielinska-Lipiec, P. Pinet, and J. Overbeeke: Acta Mater., 2001, vol. 49, pp. 1225-35.

    Article  CAS  Google Scholar 

  20. Y.T. Zhu, and X.L. Wu: Mater. Res. Lett., 2019, vol. 7, pp. 393-98.

    Article  CAS  Google Scholar 

  21. X.L. Wu, and Y.T. Zhu: Mater. Res. Lett., 2017, vol. 5, pp. 527-32.

    Article  CAS  Google Scholar 

  22. Y. Wang, G.X. Yang, W.J. Wang, X. Wang, Q. Li, and Y.J. Wei: Sci. Rep., 2017, vol. 7, pp. 1-8.

    Article  CAS  Google Scholar 

  23. A. Ghosh: Acta Mater., 1977, vol. 25, pp. 1413-24.

    Article  Google Scholar 

  24. Y.F. Zhang, J. Zheng, H.G. Shou, J.X. Li, L.Q. Wan, W.J. Han, Q. Liu, and L.H. Xia: Mater. Sci. Eng. A, 2020, vol. 792, pp. 139647.

    Article  CAS  Google Scholar 

  25. X.L. Wu, M. X. Yang, F.P. Yuan, F.L. Wu, Y.J. Wei, X.X. Huang, and Y.T. Zhu: Proc. Natl. Acad. Sci., 2015, vol. 112, pp. 14501-14505.

    Article  CAS  Google Scholar 

  26. X.L. Wu, P. Jing, L. Chen, F. Yuan, and Y.T. Zhu: Proc. Natl. Acad. Sci., 2014, vol. 111, pp. 7197-7201.

    Article  CAS  Google Scholar 

  27. K.V. Yang, C.H. Caceres, A.V. Nagasekhar, and M.A. Easton: Mater. Sci. Eng. A, 2012, vol. 20, pp. 024010.

    Google Scholar 

  28. H. Laukli, C. Gourlay, and A. Dahle: Acta Mater., 2005, vol. 36, pp. 805-18.

    Google Scholar 

  29. Y. Wang, and H. Choo: Acta Mater., 2014, vol. 81, pp. 83-97.

    Article  CAS  Google Scholar 

  30. M. Yoo: Metall, Mater. Trans. A, 1981, vol. 12, pp. 409-18.

    Article  CAS  Google Scholar 

  31. S. Agnew, C. Tomé, D. Brown, T. Holden, and S. Vogel: Scr. Metall., 2003, vol. 48, pp. 1003-1008.

    Article  CAS  Google Scholar 

  32. J. Wei, Q.D. Wang, D.D. Yin, L. Zhang, H. Zhou, B. Ye, H.Y. Jiang, and W.J. Ding: Metall, Mater. Trans. A, 2020, vol. 51, pp. 1487-92.

    Article  CAS  Google Scholar 

  33. J. Nye: Acta Mater., 1952, vol. 1, pp. 153-62.

    Article  Google Scholar 

  34. X.C. Yang, X.L. Ma, J. Moering, H. Zhou, W. Wang, Y.L. Gong, J.M. Tao, Y.T. Zhu, and X.K. Zhu: Mater. Sci. Eng. A, 2015, vol. 645, pp. 280-85.

    Article  CAS  Google Scholar 

  35. C.D. Lee: Metals. Mater. Inter., 2006, vol. 12, pp. 377-83.

    Article  CAS  Google Scholar 

  36. G. Chadha, J.E. Allison, and J.W. Jones: Metall, Mater. Trans. A, 2007, vol. 38, pp. 286-97.

    Article  CAS  Google Scholar 

  37. X. Sun, K.S. Choi, and D.S. Li: Mater. Sci. Eng. A, 2013, vol. 572, pp. 45-55.

    Article  CAS  Google Scholar 

  38. X. Luo, Z.Q. Feng, T.B. Yu, J.Q. Luo, T.L. Huang, G.L. Wu, N. Hansen, and X.X. Huang: Acta Mater., 2020, vol. 183, pp. 398-407.

    Article  CAS  Google Scholar 

  39. 39. Tang JW, Chen L, Zhao GQ, Zhang CS, Chu XG (2020) Mater. Sci. Eng. A 773:138718

    Article  CAS  Google Scholar 

  40. Y.T. Zhu, K. Ameyama, P.M. Anderson, I.J. Beyerlein, H.J. Gao, H.S. Kim, E. Lavernia, S. Mathaudhu, H. Mughrabi, R.O. Ritchie, N. Tsuji, X.Y. Zhang, and X.L. Wu: Mater. Res. Lett., 2021, vol. 9, pp. 1-31.

    Article  CAS  Google Scholar 

  41. K.V. Yang, C.H. Caceres, A.V. Nagasekhar, and M.A. Easton: Mater. Sci. Eng. A, 2012, vol. 542, pp. 49-55.

    Article  CAS  Google Scholar 

  42. P. Sharifi, Y. Fan, H.B. Anaraki, A. Banerjee, K. Sadayappan, and J.T. Wood: Metall, Mater. Trans. A, 2016, vol. 47A, pp. 5159-68.

    Article  CAS  Google Scholar 

  43. U.F. Kocks, and H. Mecking: Progress. Mater. Sci., 2003, vol. 48, pp. 171-73.

    Article  CAS  Google Scholar 

  44. Y. Zhang, J.B. Patel, J. Lazaro-Nebreda, and Z. Fan: JOM, 2018, vol. 70, pp. 2726-30.

    Article  CAS  Google Scholar 

  45. P. Sharifi, J. Jamali, K. Sadayappan, and J.T. Wood: Metall, Mater. Trans. A, 2018, vol. 49, pp. 3080-3090.

    Article  CAS  Google Scholar 

  46. Y. Zhou, Z. Guo, and S.M. Xiong: J. Mater. Process. Technol,, 2019, vol. 267, pp. 366-375.

    Article  CAS  Google Scholar 

  47. X.B. Li, S.M. Xiong, and Z.P. Guo: J. Mater. Process. Technol,, 2016, vol. 231, pp. 1-7.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially co-supported by the National Key Research and Development Program of China (No. 2016YFB0701204), the National Natural Science Foundation of China (Nos. 51575068 and 51501023), Project No. 2020CDJDPT001 supported by the Fundamental Research Funds for the Central Universities, Chongqing Natural Science Foundation, No. cstc2018jcyjAX0364, and the “111” Project (B16007) by the Ministry of Education for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiang Zheng or Hao Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted on October 18, 2021; accepted February 20, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Y., Zheng, J., Chen, J. et al. The Ductility Variation of High-Pressure Die-Cast AE44 Alloy: The Role of Inhomogeneous Microstructure. Metall Mater Trans A 52, 2274–2286 (2021). https://doi.org/10.1007/s11661-021-06220-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06220-w

Navigation