Skip to main content
Log in

New Composition Based Technique for Solidification Cracking Resistance Evaluation

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Predicting the occurrence of solidification cracking during the solidification of metallic alloys by numerical simulation is a crucial move for avoiding such defects. Several models are widely available, however, the application of such are impacted due to the specific and not accessible parameters required. A simple, composition-based approach to rank solidification cracking susceptibility is presented. The procedure links computational thermodynamic and computational fluid dynamics (CFD) to provide an evaluation tool for solidification cracking. The method is related to the liquid filling phenomena in dendritic arms during solidification, which plays a critical role in solidification cracking phenomena. The dendritic profiles were constructed using the fraction of solid calculated by commercial thermodynamic software packages. The calculated results were compared with experimental solidification cracking data and showed satisfactory accuracy. The method capability to rank the solidification cracking propensity of similar alloys based on composition provides an important new operative tool to aid alloy development in welding and additive manufacturing related areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. 1 J. Campbell: Castings Practice. Elsevier, Amsterdam; 2004.

    Google Scholar 

  2. 2 S. Kou: JOM, 2003, vol. 55, pp. 37–42.

    Article  CAS  Google Scholar 

  3. 3 N. Coniglio and C.E. Cross: Int. Mater. Rev., 2013, vol. 58, pp. 375–97.

    Article  CAS  Google Scholar 

  4. D.G. Eskin, A. Suyitno, and L. Katgerman: Prog. Mater. Sci., 2004, vol. 49, pp. 629–711.

    Article  CAS  Google Scholar 

  5. 5 D. Wang, Z. Wang, K. Li, J. Ma, W. Liu, and Z. Shen: Mater. Des., 2019, vol. 162, pp. 384–93.

    Article  CAS  Google Scholar 

  6. L.N. Carter, M.M. Attallah, and R.C. Reed: Superalloys 2012. Wiley, Hoboken 2012, pp. 577–86.

    Google Scholar 

  7. 7 A. Hariharan, L. Lu, J. Risse, A. Kostka, B. Gault, E.A. Jägle, and D. Raabe: Phys. Rev. Mater., 2019, vol. 3, p. 123602.

    Article  CAS  Google Scholar 

  8. C.E. Cross: Hot Cracking Phenomena in Welds. Springer, Berlin, pp. 3–18 (2005)

    Book  Google Scholar 

  9. V. Kujanpaa, N. Suutala, T. Takalo, and T. Moisio: Weld. Res. Int., 1979, vol. 9 (2), pp. 55–75.

    CAS  Google Scholar 

  10. 10 J.N. DuPont, M.R. Notis, A.R. Marder, C. V. Robino, and J.R. Michael: Metall. Mater. Trans. A, 1998, vol. 29, pp. 2785–96.

    Article  CAS  Google Scholar 

  11. 11 B.T. Alexandrov, A.T. Hope, J.W. Sowards, J.C. Lippold, and S. McCracken: Weld. World, 2011, vol. 55, pp. 65–76.

    Article  CAS  Google Scholar 

  12. 12 R. Wheeling and J. Lippold: Weld. J., 2016, vol. 95(7), pp. 229–38.

    Google Scholar 

  13. 13 S. Kou, V. Firouzdor, and I.W. Haygood: in Hot Cracking Phenomena in Welds III, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 3–23.

    Book  Google Scholar 

  14. 14 G. Cao and S. Kou: Metall. Mater. Trans. A, 2006, vol. 37, pp. 3647–63.

    Article  CAS  Google Scholar 

  15. 15 V. Shankar and J.H. Devletian: Sci. Technol. Weld. Join., 2005, vol. 10, pp. 236–43.

    Article  CAS  Google Scholar 

  16. 16 B.J. Sutton and J.C. Lippold: Proc. Int. Offshore Polar Eng. Conf., 2013, vol. 9, pp. 340–7.

    Google Scholar 

  17. 17 J. Yoo, K. Han, Y. Park, J. Choi, and C. Lee: Sci. Technol. Weld. Join., 2014, vol. 19, pp. 514–20.

    Article  CAS  Google Scholar 

  18. 18 J. Yoo, B. Kim, Y. Park, and C. Lee: J. Mater. Sci., 2015, vol. 50, pp. 279–86.

    Article  CAS  Google Scholar 

  19. A.C. Martin, J.P. Oliveira, and C. Fink: Metall. Mater. Trans. A 2020, vol. 51, pp. 778–87.

    Article  CAS  Google Scholar 

  20. 20 Z. Sun, X.P. Tan, M. Descoins, D. Mangelinck, S.B. Tor, and C.S. Lim: Scr. Mater., 2019, vol. 168, pp. 129–33.

    Article  CAS  Google Scholar 

  21. 21 T. Kannengiesser and T. Boellinghaus: Weld. World, 2014, vol. 58, pp. 397–421.

    Article  Google Scholar 

  22. A. Suyitno, W.H. Kool, and L. Katgerman: Metall. Mater. Trans. A, 2004, vol. 35, pp. 2917–26.

    Article  CAS  Google Scholar 

  23. 23 J.C. Lippold, J.W. Sowards, G.M. Murray, B.T. Alexandrov, and A.J. Ramirez: Hot Crack. Phenom. Welds II, 2008, pp. 147–70.

    Article  Google Scholar 

  24. 24 W. Rindler, E. Kozeschnik, and B. Buchmayr: Steel Res., 2000, vol. 71, pp. 460–5.

    Article  CAS  Google Scholar 

  25. 25 J.N. DuPont: in Hot Cracking Phenomena in Welds III, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 265–93.

    Book  Google Scholar 

  26. 26 J. Draxler, J. Edberg, J. Andersson, and L.-E. Lindgren: Weld. World, 2019, vol. 63, pp. 1503–19.

    Article  Google Scholar 

  27. 27 E. Scheil: Zeitschrift für Met., 1942, vol. 34, pp. 70–2.

    Google Scholar 

  28. M.C. Brody, H. D. Flemings: Trans. Metall. Soc. Aime, 1966, vol. 236(5), pp. 615–624.

    CAS  Google Scholar 

  29. 29 T.W. Clyne, M. Wolf, and W. Kurz: Metall. Trans. B, 1982, vol. 13, pp. 259–66.

    Article  CAS  Google Scholar 

  30. M. Rappaz, J.M. Drezet, and M. Gremaud: Metall. Mater. Trans. A 1999, vol. 30, pp. 449–55.

    Article  CAS  Google Scholar 

  31. 31 T.W. Clyne and G.J. Davies: Br. Foundrym., 1981, vol. 74, pp. 65–73.

    Google Scholar 

  32. J.M. Drezet and D. Allehaux: Hot Cracking Phenomena in Welds II. Springer, Berlin pp. 27–45 (2008)

    Book  Google Scholar 

  33. 33 C.E. Cross, N. Coniglio, P. Schempp, and M. Mousavi: in Hot Cracking Phenomena in Welds III, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 25–41.

    Book  Google Scholar 

  34. 34 S. Kou: Acta Mater., 2015, vol. 88, pp. 366–74.

    Article  CAS  Google Scholar 

  35. 35 S.L. Chen, S. Daniel, F. Zhang, Y.A. Chang, X.Y. Yan, F.Y. Xie, R. Schmid-Fetzer, and W.A. Oates: Calphad Comput. Coupling Phase Diagrams Thermochem., 2002, vol. 26, pp. 175–88.

    Article  CAS  Google Scholar 

  36. 36 J.O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman: Calphad Comput. Coupling Phase Diagrams Thermochem., 2002, vol. 26, pp. 273–312.

    Article  CAS  Google Scholar 

  37. 37 S. Kou: Weld. J., 2015, vol. 94, pp. 374s-388s.

    Google Scholar 

  38. K. Liu and S. Kou: Sci. Technol. Weld. Join., DOI:10.1080/13621718.2019.1681160.

  39. 39 J. Liu and S. Kou: Acta Mater., 2015, vol. 100, pp. 359–68.

    Article  CAS  Google Scholar 

  40. 41 C. Liu, Y. Sun, M. Wen, T. He, and J. Yu: J. Manuf. Process., 2020, vol. 56, pp. 820–9.

    Article  Google Scholar 

  41. Y.F. Guven, J.D. Hunt, B.Y.F. Guven, and J.D. Hunt: Cast Met., https://doi.org/10.1080/09534962.1988.11818955.

  42. L. Lu, A.K. Dahle, C. Davidson, and D. StJohn: TMS Light Met., 2007, pp. 721–6.

  43. 44 J.N. Dupont, C. V. Robino, and A.R. Marder: Acta Mater., 1998, vol. 46, pp. 4781–90.

    Article  CAS  Google Scholar 

  44. 46 A. Singer and P. Jennings: J. Inst. Met., 1946, vol. 73, pp. 197–212.

    CAS  Google Scholar 

  45. 47 W.I. Pumphrey and J.V. Lyons: J. Inst. Met., 1948, vol. 74, pp. 439–455.

    CAS  Google Scholar 

  46. J.D. Dowd: Weld. J., 1952, vol. 31(10), pp. 448S–456S.

    CAS  Google Scholar 

  47. K. Kadoi and K. Shinozaki: Metall. Mater. Trans. A 2017, vol. 48, pp. 5860–9.

    Article  CAS  Google Scholar 

  48. J.N. DuPont, J.C. Lippold, and S.D. Kiser: Welding Metallurgy and Weldability of Nickel-Base Alloys. Wiley, Hoboken; 2009.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Ramirez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 28, 2020, accepted March 1, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giorjao, R., Sutton, B. & Ramirez, A. New Composition Based Technique for Solidification Cracking Resistance Evaluation. Metall Mater Trans A 52, 2512–2521 (2021). https://doi.org/10.1007/s11661-021-06244-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06244-2

Navigation