Skip to main content
Log in

Excess Solute Carbon and Retained Tetragonality in Tempered Fe-0.6C-1Mn Martensite and the Effect of Silicon Addition

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The tetragonality and carbon distribution in tempered Fe-0.6C-1Mn martensite were investigated by X-ray diffraction and atom probe tomography to elucidate strain relaxation in the tetragonal lattice during tempering and its relationship with the solubility of excess carbon in martensite. Even though tetragonality (c/a) decreased with an increase in the tempering temperature, it persisted at low levels up to 400 °C. Si addition suppressed the decrease in tetragonality at 400 °C by inhibiting recovery in the dislocated matrix. Such persistence implies that dislocation migration is crucial for the complete release of tetragonal lattice strain at such a temperature, in addition to the decrease in the amount of solute carbon in martensite. A low level of tetragonality was observed for martensite containing carbon in the solid solution below the critical value of ~ 0.2 mass pct, at which a bcc structure was predicted. The amount of solute carbon after tempering was linearly correlated with tetragonality in the solute carbon content range of 0.07 to 0.6 mass pct, and the correlation coefficient was similar to those for as-quenched auto-tempered martensite and bainitic ferrite; these results indicate that the amount of excess carbon is simply determined by the amount of tetragonal lattice distortions remaining after carbide precipitation and recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. [1] G.R. Speich, W.C. Leslie: Metall. Trans., 1972, vol. 3, pp. 1043–1054.

    Article  CAS  Google Scholar 

  2. [2] M. Kusunoki, S. Nagakura: J. Appl. Crystallogr., 1981, vol. 14, pp. 329–336.

    Article  CAS  Google Scholar 

  3. K.A. Taylor, L.I. Chang, G.B. Olson, G.D.W. Smith, M. Cohen, J.B. VanderSande: Metall. Trans. A, 1989, vol. 20, pp. 2717–2737.

    Article  Google Scholar 

  4. [4] M.K. Miller, P.A. Beaven, S.S. Brenner, G.D.W. Smith: Metall. Trans. A, 1983, vol. 14, pp. 1021–1024.

    CAS  Google Scholar 

  5. G.Krauss: in Phase transformations in steels, Diffusionless transformations, high strength steels, modelling and advanced analytical techniques, Woodhead Publishing, Cambridge, 2012, pp. 126-150

    Book  Google Scholar 

  6. [6] K.H. Jack: J. Iron Steel Inst., 1951, vol. 169, pp. 26–36.

    CAS  Google Scholar 

  7. [7] Y. Hirotsu, S. Nagakura: Acta Metall., 1972, vol. 20, pp. 645–655.

    Article  CAS  Google Scholar 

  8. [8] K. Shimizu, H. Okamoto: Trans. Jpn. Inst. Met., 1974, vol. 15, pp. 193–199.

    Article  CAS  Google Scholar 

  9. [9] D.L. Williamson, K. Nakazawa, G. Krauss: Metall. Trans. A, 1979, vol. 10, pp. 1351–1363.

    Article  Google Scholar 

  10. [10] G. Miyamoto, J.C. Oh, K. Hono, T. Furuhara, T. Maki: Acta Mater., 2007, vol. 55, pp. 5027–5038.

    Article  CAS  Google Scholar 

  11. [11] A.G. Allten, P. Payson: Trans. Am. Soc. Met., 1953, vol. 45, pp. 498–532.

    Google Scholar 

  12. [12] C.J. Altstetter, M. Cohen, B.L. Averbach: Trans. Am. Soc. Met., 1962, vol. 55, pp. 287–300.

    CAS  Google Scholar 

  13. [13] R.A. Grange, C.R. Hribal, L.F. Porter: Metall. Trans. A, 1977, vol. 8, pp. 1775–1785.

    Article  Google Scholar 

  14. S.J. Barnard, G.D.W. Smith, A.J. Garrat-Reed, J. VanderSande, Solid-Solid Phase Transformations. TMS-AIME, Warrendale, PA, 1981, pp. 881–885.

    Google Scholar 

  15. [15] C. Zhu, X.Y. Xiong, A. Cerezo, R. Hardwicke, G. Krauss, G.D.W. Smith: Ultramicroscopy, 2007, vol. 107, pp. 808–812.

    Article  CAS  Google Scholar 

  16. B. Kim, E. Boucard, T. Sourmail, D. SanMartín, N. Gey, P.E.J. Rivera-Díaz-del-Castillo: Acta Mater., 2014, vol. 68, pp. 169–178.

    Article  CAS  Google Scholar 

  17. [17] K. Honda, Z. Nishiyama: Sci. Rep. Tohoku Imp. Univ., 1932, vol. 21, pp. 299–331.

    CAS  Google Scholar 

  18. [18] L. Cheng, A. Böttger, Th.H. de Keijser, E.J. Mittemeijer: Scripta Metall. Mater.,1990, vol. 24, pp. 509–514.

    Article  CAS  Google Scholar 

  19. [19] L. Xiao, Z. Fan, Z. Jinxiu, Z. Mingxing, K. Mokuang, G. Zhenqi: Phys. Rev. B, 1995, vol. 52, pp. 9970–9978.

    Article  CAS  Google Scholar 

  20. [20] O.D. Sherby, J. Wadsworth, D.R. Lesuer, C.K. Syn: Mater. Trans., 2008, vol. 49, pp. 2016–2027.

    Article  CAS  Google Scholar 

  21. [21] B. Hutchinson, J. Hagström, O. Karlsson, D. Lindell, M. Tornberg, F. Lindberg, M. Thuvander: Acta Mater., 2011, vol. 59, pp. 5845–5858.

    Article  CAS  Google Scholar 

  22. [22] Y. Lu, H. Yu, R.D. Sisson Jr.: Mater. Sci. Eng. A, 2017, vol. 700, pp. 592–597.

    Article  CAS  Google Scholar 

  23. [23] N. Maruyama, S. Tabata, H. Kawata: Metall. Mater. Trans. A, 2020, vol. 51, pp. 1085–1097.

    Article  CAS  Google Scholar 

  24. [24] C.S. Roberts, B.L. Averbach, M. Cohen: Trans. Am. Soc. Met., 1953, vol. 45, pp. 576–604.

    Google Scholar 

  25. [25] G.V. Kurdjumov: J. Iron Steel Inst., 1960, vol. 195, pp. 26–48.

    Google Scholar 

  26. [26] P.C. Chen, B.O. Hall, P.G. Winchell: Metall. Trans. A, 1980, vol. 11, pp. 1323–1331.

    Article  Google Scholar 

  27. [27] P.C. Chen and P.G. Winchell: Metall. Trans. A, 1980, vol. 11, pp. 1333–1339

    Article  Google Scholar 

  28. [28] L. Cheng, N.M. van der Pers, A. Böttger, Th.H. de Keijser, E.J. Mittemeijer: Metall. Trans. A, 1991, vol. 22, pp. 1957–1967.

    Article  Google Scholar 

  29. [29] C. Zener: Trans. AIME, 1946, vol. 167 pp. 550–595.

    Google Scholar 

  30. [30] G.V. Kurdjumov, A.G. Khachaturyan: Metall. Trans., 1972, vol. 3, pp. 1069–1076.

    Article  Google Scholar 

  31. [31] G.V. Kurdjumov, A.G. Khachaturyan: Acta Metall., 1975, vol. 23, pp. 1077–1088.

    Article  Google Scholar 

  32. [32] Z. Fan, L. Xiao, Z. Jinxiu, K. Mokuang, G. Zhenqi: Phys. Rev. B, 1995, vol. 52, pp. 9979–9987.

    Article  CAS  Google Scholar 

  33. [33] A. Udyansky, J. von Pezold, A. Dick, J. Neugebauer: Phys. Rev. B, 2011, vol. 83, pp. 184112.

    Article  CAS  Google Scholar 

  34. [34] A. Perlade, O. Bouaziz, Q. Furnémont: Mater. Sci. Eng. A, 2003, vol. 356, pp. 145–152.

    Article  CAS  Google Scholar 

  35. [35] H.M. Rietveld: J. Appl. Crystallogr., 1969, vol. 2, pp. 65–71.

    Article  CAS  Google Scholar 

  36. [36] G.K. Williamson, R.E. Smallman: Philos. Mag., 1956, vol. 1, pp. 34–46.

    Article  CAS  Google Scholar 

  37. [37] W. Sha, L. Chang, G.D.W. Smith, L. Cheng, E.J. Mittemeijer: Surf. Sci., 1992, vol. 266, pp. 416–423.

    Article  CAS  Google Scholar 

  38. D.J. Larson, T.J. Prosa, R.M. Ulfig, B.P. Geiser, T.F. Kelly (2013) Local Electrode Atom Probe Tomography - A User’s Guide. Springer, Berlin, pp. 178

    Book  Google Scholar 

  39. S. Morito, J. Nishikawa and T. Maki: ISIJ International, vol. 43, 2003, pp. 1475–1477

    Article  CAS  Google Scholar 

  40. [40] J.C. Swartz: Trans. Met. Soc. AIME, 1969, vol. 245, pp. 1083–1092.

    CAS  Google Scholar 

  41. [41] J. Chipman: Metall. Mater. Trans. B, 1972, vol. 3, pp. 55–64.

    Article  Google Scholar 

  42. [42] L. Morsdorf, C.C. Tasan, D. Ponge, D. Raabe: Acta Mater., 2015, vol. 95, pp. 366–377.

    Article  CAS  Google Scholar 

  43. [43] J.R.G. da Silva, R.B. McLellan: Mater. Sci. Eng., 1976, vol. 26, pp. 83–87.

    Article  Google Scholar 

  44. D. Löhe, O. Vöhringer (2002) Handbook of Residual Stress and Deformation, ASM International, Materials Park, pp. 54–69.

    Google Scholar 

  45. [45] L. Cheng, N.M. van der Pers, A. Böttger, Th.H. de Keijser, E.J. Mittemeijer: Metall. Trans. A, 1990, vol. 21, pp. 2857–2867.

    Article  Google Scholar 

  46. [46] T. Tanaka, N. Maruyama, N. Nakamura, A.J. Wilkinson: Acta Mater., 2020, vol. 195, pp. 728–738.

    Article  CAS  Google Scholar 

  47. [47] H. Abe: Scand. J. Metall., 1984, vol. 13, pp. 226–239.

    CAS  Google Scholar 

  48. [48] J.H. Jang, H.K.D.H. Bhadeshia, D.-W. Suh: Scripta Mater., 2013, vol. 68, pp. 195–198.

    Article  CAS  Google Scholar 

  49. [49] C.N. Hulme-Smith, I. Lonardelli, A.C. Dippel, H.K.D.H. Bhadeshia: Scripta Mater., 2013, vol. 69, pp. 409–412.

    Article  CAS  Google Scholar 

  50. [50] C. Garcia-Mateo, J.A. Jiménez, H.-W. Yen, M.K. Miller, L. Morales-Rivas, M. Kuntz, S.P. Ringer, J.-R. Yang, F.G. Caballero: Acta Mater., 2015, vol. 91, pp. 162–173.

    Article  CAS  Google Scholar 

  51. [51] H. Ohtsuka, V.A. Dinh, T. Ohno, K. Tsuzaki, K. Tsuchiya, R. Sahara, H. Kitazawa, T. Nakamura: J. Iron Steel Inst. Japan, 2014, vol. 100, pp. 1329–1338.

    Article  CAS  Google Scholar 

  52. [52] R. Rementeria, J.D. Poplawsky, M.M. Aranda, W. Guo, J.A. Jimenez, C. Garcia-Mateo, F.G. Caballero: Acta Mater., 2017, vol. 125, pp. 359–368.

    Article  CAS  Google Scholar 

  53. [53] F. Archie, M.Z. Mughal, M. Sebastiani, E. Bemporad, S. Zaefferer: Acta Mater., 2018, vol. 150, pp. 327–338.

    Article  CAS  Google Scholar 

  54. [54] D. Griffiths, J.N. Riley: Acta Metall., 1966, vol. 14, pp. 755–773.

    Article  CAS  Google Scholar 

  55. [55] M. Tomita, T. Inaguma, H. Sakamoto, K. Ushioda: ISIJ Int., 2017, vol. 57, pp. 921–928.

    Article  CAS  Google Scholar 

  56. [56] N. Sugiura, N. Yoshinaga, K. Kawasaki, Y. Yamaguchi, J. Takahashi, T. Yamada: J. Iron Steel Inst. Japan, 2008, vol. 94, pp. 179–187.

    Article  CAS  Google Scholar 

  57. [57] T. Ogawa, N. Sugiura, N. Maruyama, N. Yoshinaga: Mater. Sci. Eng. A, 2013, vol. 564, pp. 42–45.

    Article  CAS  Google Scholar 

  58. G. Miyamoto, Doctoral thesis, Kyoto University, 2006, p. 49.

  59. [59] H. Sawada, N. Maruyama, S. Tabata, K. Kawakami: ISIJ Int., 2019, vol. 59, pp. 1128–1135.

    Article  CAS  Google Scholar 

  60. [60] B. Gault, M.D. Moody, J.M. Cairney, S.P. Ringer, Atom Probe Microscopy, Springer, New York, 2012.

    Book  Google Scholar 

  61. [61] M.K. Miller, M.G. Hetherington: Surf. Sci., 1991, vol. 246, pp. 442–449.

    Article  CAS  Google Scholar 

  62. [62] W. Lu, M. Herbig, C.H. Liebscher, L. Morsdorf, R.K.W. Marceau, G. Dehm, D. Raabe: Acta Mater., 2018, vol. 158, pp. 297–312.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Maruyama.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 25, 2020; accepted March 15, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maruyama, N., Tabata, S. Excess Solute Carbon and Retained Tetragonality in Tempered Fe-0.6C-1Mn Martensite and the Effect of Silicon Addition. Metall Mater Trans A 52, 2576–2588 (2021). https://doi.org/10.1007/s11661-021-06249-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06249-x

Navigation