Skip to main content
Log in

Characteristics of melting heat transport of blood with time-dependent cross-nanofluid model using Keller–Box and BVP4C method

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

The blood flow with heat transportation has prominent clinical importance during the levels where the blood flow needs to be checked (surgery) and the heat transportation rate must be controlled (therapy). This work presents an analysis of the melting heat transport of blood, which consists of iron nanoparticles along free convection with cross-model and solution of the partial differential equation (PDEs) are emerged by the mathematical model. Being the importance of iron oxide nanoparticles in applications of the biomedical field due to their intrinsic properties such as colloidal stability, surface engineering capability and low toxicity, this study has been launched. Furthermore, PDEs of the problem are converted into a set of nonlinear ordinary differential equations (ODEs) by proper transformations. The solution of this system of ODEs is calculated through RK 4 method and Keller–Box scheme. Some leading points and numerical results of this study of both types of presence and absence of meting effects are tabulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability statement

No data are used to support this study.

Abbreviations

\(V,\tau\) :

Velocity, Cauchy tensor

\(p,I,A_{1}\) :

Pressure, identity tensor, Rivilin tensor

\(\mu_{\infty } ,\mu_{0}\) :

Lower shear rate and higher shear rate viscosity,

\(A = \frac{a}{c}\) :

Unsteady parameter

\(\lambda = \frac{{g\beta_{{\text{f}}} \left( {T_{2} - T_{{\text{m}}} } \right)}}{{u_{{\text{w}}}^{2} }}\) :

Convection parameter

\(M = \frac{{\left( {C_{{\text{p}}} } \right)_{{\text{f}}} \left( {T_{2} - T_{{\text{m}}} } \right)x}}{{\lambda^{*} + c_{{\text{s}}} \left( {T_{{\text{m}}} - T_{0} } \right)}}\) :

Melting parameter

\(\Pr = \frac{{\left( {\rho C_{{\text{p}}} } \right)_{{\text{f}}} }}{{\mu_{{{\text{nf}}}} }}\) :

Prandtl number

\({\text{Re}}_{x} = \tfrac{{\left( {u_{{\text{w}}} } \right)}}{{\upsilon_{{\text{f}}} }}\) :

Reynold number

\(\beta_{{{\text{nf}}}} \left( {\frac{1}{{\text{K}}}} \right)\) :

Coefficient of thermal expansion

\(k_{{{\text{nf}}}} \left( {\frac{{\text{W}}}{{{\text{Km}}}}} \right)\) :

Effective thermal conductivity

\(\rho_{{\text{f}}} \left( {\frac{{{\text{kg}}}}{{{\text{m}}^{3} }}} \right)\) :

Reference density of fluid

\(\rho_{{\text{s}}} \left( {\frac{{{\text{kg}}}}{{{\text{m}}^{3} }}} \right)\) :

Reference density of solid

\(\mu_{{\text{f}}} \left( {\frac{{{\text{Ns}}}}{{{\text{m}}^{2} }}} \right)\) :

Viscosity of fluid

\(\lambda^{*} \left( {\frac{{\text{J}}}{{{\text{kg}}}}} \right)\) :

Latent heat transfer of fluid

\(c_{{\text{s}}} \left( {\frac{{\text{J}}}{{\text{K}}}} \right)\) :

Heat capacity of solid surface

\({\text{We}}\) :

Weissenberg number

\(u\left( {\text{m/s}} \right)\) :

Velocity along x-axis

\(v\left( {\text{m/s}} \right)\) :

Velocity along y-axis

\(T_{1} \left( {\text{K}} \right)\) :

Temperature of nanofluid

\(T_{2} \left( {\text{K}} \right)\) :

Temperature of ambient fluid

\(\rho_{{{\text{nf}}}} \left( {\frac{{{\text{kg}}}}{{{\text{m}}^{3} }}} \right)\) :

Density of nanofluid

\(\mu_{{{\text{nf}}}} \left( {\frac{{{\text{Ns}}}}{{{\text{m}}^{2} }}} \right)\) :

Effective viscosity of nanofluid

\(g\left( {{\text{m/s}}^{2} } \right)\) :

Gravitational acceleration

\(\phi\) :

Visibility of concentration

\(k_{{\text{f}}} \left( {\text{W/Km}} \right)\) :

Thermal conductivity of fluid

\(k_{{\text{s}}} \left( {\text{W/Km}} \right)\) :

Thermal conductivity of solid

\(a,c\) :

Constant

\(n\) :

Cross-fluid index

References

  1. Maxwell JC (1873) A treatise on electricity and magnetism, vol 1. Clarendon Press, Oxford

    MATH  Google Scholar 

  2. Jeffrey DJ (1973) Conduction through a random suspension of spheres. Proc R Soc Lond Math Phys Sci 335(1602):355–367

    Google Scholar 

  3. Obrien RW (1979) A method for the calculation of the effective transport properties of suspensions of interacting particles. J Fluid Mech 91(1):17–39

    Article  MathSciNet  Google Scholar 

  4. Latos E, Suzuki T (2020) Mass conservative reaction diffusion systems describing cell polarity. arXiv: 2006.12907

  5. Yano T, Nishino K (2020) Numerical study on the effects of convective and radiative heat transfer on thermocapillary convection in a high-Prandtl-number liquid bridge in weightlessness. Adv Sp Res 66:2047

    Article  Google Scholar 

  6. Axmann S, Pokorny M (2019) Steady solutions to a model of compressible chemically reacting fluid with high density. arXiv preprint arXiv: 1912.12543

  7. Egger H, Philippi N (2020) On the transport limit of singularly perturbed convection-diffusion problems on networks. arXiv preprint arXiv: 2004.09490

  8. Wahab A, Hassan A, Qasim MA, Ali HM, Babar H, Sajid MU (2019) Solar energy systems—potential of nanofluids. J Mol Liq 289:111049

    Article  Google Scholar 

  9. Shah TR, Ali HM (2019) Applications of hybrid nanofluids in solar energy, practical limitations and challenges: a critical review. Sol Energy 183:173–203

    Article  Google Scholar 

  10. Michael JJ, Iniyan S (2015) Performance analysis of a copper sheet laminated photovoltaic thermal collector using copper oxide–water nanofluid. Sol Energy 119:439–451

    Article  Google Scholar 

  11. Chen W, Zou C, Li X (2019) Application of large-scale prepared MWCNTs nanofluids in solar energy system as volumetric solar absorber. Sol Energy Mater Sol Cells 200:109931

    Article  Google Scholar 

  12. Yurddaş A (2020) Optimization and thermal performance of evacuated tube solar collector with various nanofluids. Int J Heat Mass Transf 152:119496

    Article  Google Scholar 

  13. Abbas N, Awan MB, Amer M, Ammar SM, Sajjad U, Ali HM et al (2019) Applications of nanofluids in photovoltaic thermal systems: a review of recent advances. Phys A 536:122513

    Article  Google Scholar 

  14. Radwan A, Ahmed M (2018) Thermal management of concentrator photovoltaic systems using microchannel heat sink with nanofluids. Sol Energy 171:229–246

    Article  Google Scholar 

  15. Mercan M, Yurddaş A (2019) Numerical analysis of evacuated tube solar collectors using nanofluids. Sol Energy 191:167–179

    Article  Google Scholar 

  16. Crane LJ (1970) Flow past a stretching plate. Zeitschrift für angewandte Mathematik und Physik ZAMP 21(4):645–647

    Article  Google Scholar 

  17. Mukhopadhyay S (2013) Slip effects on MHD boundary layer flow over an exponentially stretching sheet with suction/blowing and thermal radiation. Ain Shams Eng J 4(3):485–491

    Article  Google Scholar 

  18. Bhattacharyya K, Mukhopadhyay S, Layek GC, Pop I (2012) Effects of thermal radiation on micropolar fluid flow and heat transfer over a porous shrinking sheet. Int J Heat Mass Transf 55(11–12):2945–2952

    Article  Google Scholar 

  19. Turkyilmazoglu M (2014) Exact solutions for two-dimensional laminar flow over a continuously stretching or shrinking sheet in an electrically conducting quiescent couple stress fluid. Int J Heat Mass Transf 72:1–8

    Article  Google Scholar 

  20. Alsaedi A, Awais M, Hayat T (2012) Effects of heat generation/absorption on stagnation point flow of nanofluid over a surface with convective boundary conditions. Commun Nonlinear Sci Numer Simul 17(11):4210–4223

    Article  MathSciNet  Google Scholar 

  21. Escudier MP, Gouldson IW, Pereira AS, Pinho FT, Poole RJ (2001) On the reproducibility of the rheology of shear-thinning liquids. J Nonnewton Fluid Mech 97(2–3):99–124

    Article  Google Scholar 

  22. Barnes HA, Hutton JF, Walters K (1989) An introduction to rheology, vol 3. Elsevier, Oxford

    Book  Google Scholar 

  23. Xie J, Jin YC (2016) Parameter determination for the Cross rheology equation and its application to modeling non-Newtonian flows using the WC-MPS method. Eng Appl Comput Fluid Mech 10(1):111–129

    Google Scholar 

  24. Khan M, Manzur M (2016) Boundary layer flow and heat transfer of cross fluid over a stretching sheet. arXiv preprint arXiv: 1609.01855

  25. Rao MA (2013) Rheology of fluid, semisolid, and solid foods: principles and applications. Springer, Berlin

    Google Scholar 

  26. Steffe JF (1992) Rheological methods in food process engineering, pp 9–30

  27. Gan Y (ed) (2012) Continuum mechanics: progress in fundamentals and engineering applications. BoD–Books on Demand

  28. Baleanu D, Sadat R, Ali MR (2020) The method of lines for solution of the carbon nanotubes engine oil nanofluid over an unsteady rotating disk. Eur Phys J Plus 135:788. https://doi.org/10.1140/epjp/s13360-020-00763-4

    Article  Google Scholar 

  29. Gupta S, Sharma K (2017) Numerical simulation for magnetohydrodynamic three dimensional flow of Casson nanofluid with convective boundary conditions and thermal radiation. Eng Comput 34:2698

    Article  Google Scholar 

  30. Grubka LJ, Bobba KM (1985) Heat transfer characteristics of a continuous stretching surface with variable temperature. ASME J Heat Transf 107(1):248–250

    Article  Google Scholar 

  31. Abel MS, Mahesha N (2008) Heat transfer in MHD viscoelastic fluid flow over a stretching sheet with variable thermal conductivity, non-uniform heat source and radiation. Appl Math Model 32(10):1965–1983

    Article  MathSciNet  Google Scholar 

  32. Baby AK, Manjunatha S, Jayanthi S, Gireesha BJ, Archana M Analysis of unsteady flow of blood conveying iron oxide nanoparticles on melting surface due to free convection using Casson model. Heat Transf

  33. Sabir Z, Ayub A, Guirao JL, Bhatti S, Shah SZH (2020) The effects of activation energy and thermophoretic diffusion of nanoparticles on steady micropolar fluid along with brownian motion. Adv Mater Sci Eng 2020:1

    Article  Google Scholar 

  34. Zaydan M, Wakif A, Animasaun IL, Khan U, Baleanu D, Sehaqui R (2020) Significances of blowing and suction processes on the occurrence of thermo-magneto-convection phenomenon in a narrow nanofluidic medium: a revised Buongiorno’s nanofluid model. Case Stud Therm Eng 22:100726

    Article  Google Scholar 

  35. Ayub A, Wahab HA, Sabir Z, Arbi A (2020) A note on heat transport with aspect of magnetic dipole and higher order chemical process for steady micropolar fluid. In fluid-structure interaction. IntechOpen, London

    Google Scholar 

  36. Bašić‐Šiško A, Dražić I Uniqueness of generalized solution to micropolar viscous real gas flow with homogeneous boundary conditions. Math Methods Appl Sci

  37. Wahab HA, Hussain Shah SZ, Ayub A, Sabir Z, Bilal M, Altamirano GC Multiple characteristics of three‐dimensional radiative cross fluid with velocity slip and inclined magnetic field over a stretching sheet. Heat Transf

  38. Umar M, Akhtar R, Sabir Z, Wahab HA, Zhiyu Z, Imran A et al (2019) Numerical treatment for the three-dimensional Eyring–Powell fluid flow over a stretching sheet with velocity slip and activation energy. Adv Math Phys

  39. Sabir Z, Akhtar R, Zhiyu Z, Umar M, Imran A, Wahab HA et al (2019) A computational analysis of two-phase casson nanofluid passing a stretching sheet using chemical reactions and gyrotactic microorganisms. Math Probl Eng

  40. Umar M, Sabir Z, Imran A, Wahab AH, Shoaib M, Raja MAZ (2020) The 3-D flow of Casson nanofluid over a stretched sheet with chemical reactions, velocity slip, thermal radiation and Brownian motion. Therm Sci 24(5):2929–2939

    Article  Google Scholar 

  41. Sajid T, Tanveer S, Sabir Z, Guirao JLG (2020) Impact of activation energy and temperature-dependent heat source/sink on Maxwell–Sutterby fluid. Math Probl Eng 2020:1

    MathSciNet  MATH  Google Scholar 

  42. Sabir Z, Imran A, Umar M, Zeb M, Shoaib M, Raja MAZ (2020) A numerical approach for two-dimensional Sutterby fluid flow bounded at a stagnation point with an inclined magnetic field and thermal radiation impacts. Therm Sci 00:186–186

    Google Scholar 

  43. Sabir Z, Sakar MG, Yeskindirova M, Saldir O (2020) Numerical investigations to design a novel model based on the fifth order system of Emden–Fowler equations. Theor Appl Mech Lett 10(5):333–342

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed R. Ali.

Ethics declarations

Conflict of interest

There is no conflict of interest. All authors contributed equally.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayub, A., Sabir, Z., Altamirano, G.C. et al. Characteristics of melting heat transport of blood with time-dependent cross-nanofluid model using Keller–Box and BVP4C method . Engineering with Computers 38, 3705–3719 (2022). https://doi.org/10.1007/s00366-021-01406-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01406-7

Keywords

Navigation