Skip to main content
Log in

Redox State of Tektites from Different Scattering Fields: Evidence from the Data of Electrochemical Study of Intrinsic Oxygen Fugacity

  • GEOCHEMISTRY
  • Published:
Doklady Earth Sciences Aims and scope Submit manuscript

Abstract

The results of study of the intrinsic oxygen fugacity (fO2) of various types of tektites from the European and Australasian scattering fields (moldavites, indochinites, philippinites, and australites) performed by the electrochemical method using an apparatus with two solid electrolytes are reported. The fO2 values of tektite glasses in the temperature range of 800–1050°C studied are between the fO2 of the iron–wustite and wustite–magnetite buffer equilibria. They demonstrate a significantly more reduced character of tektites in comparison with magmatic melts (volcanic glasses) of the crustal and mantle origin. Among the Australasian tektites, the widest fO2 variations are typical of indochinites including more diverse tektite species (Muong-Nong type and splat-forms), which are much closer to the hypothetical parental impact crater than philippinites and australites. At temperatures above that of complete melting (≥1000°C), fO2 for all tektite glasses is significantly higher than the fO2 values that correspond to the equilibrium of the metallic phase of iron with the silicate melt. It is assumed that the presence of microinclusions of metallic iron together with wustite, as well as magnetite and hematite in some tektites, is associated with nonequilibrium processes at different stages of tektite formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. J. A. O’Keefe, Tektites and Their Origin (Elsevier, 1976).

    Google Scholar 

  2. E. Izokh, I. Kashkarov, and N. Korotkova, Age and Chemical Composition of the Zhamanshine Crater Impactites and Tektites and Comparison with Australasian Tektites (UIGGM, Novosibirsk, 1993) [in Russian].

    Google Scholar 

  3. W. V. Engelhardt, E. Luft, J. Arndt, H. Schock, and W.  Weiskirchner, Geochim. Cosmochim. Acta 51, 1425–1443 (1987).

    Google Scholar 

  4. V. I. Fel’dman, Petrology for Impactites (MSU, Moscow, 1990) [in Russian].

    Google Scholar 

  5. G. Heinen, Tektites Witnesses of Cosmic Catastrophes (Imprimerie, Luxembourg, 1998).

    Google Scholar 

  6. A. T. Bazilevskii, B. A. Ivanov, K. P. Florenskii, O. I. Yakovlev, V. I. Fel’dman, and L. B. Granovskii, Shock Craters on the Moon and Planets (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  7. H. J. Melosh, Impact Cratering—a Geologic Process (Oxford Univ. Press, New York; Claredon Press, Oxford, 1989).

  8. O. I. Yakovlev, Yu. P. Dikov, and M. V. Gerasimov, Geochem. Int. 38 (10), 937–955 (2000).

    Google Scholar 

  9. O. A. Lukanin and A. A. Kadik, Geochem. Int. 45 (9), 857–882 (2007).

    Google Scholar 

  10. L. S. Walter and A. S. Doan, Meteoritics 4, 295–296 (1969).

    Google Scholar 

  11. R. Brett and M. Sato, Geochim. Cosmochim. Acta 48, 111–120 (1984).

    Google Scholar 

  12. A. A. Kadik, O. A. Lukanin, E. V. Zharkova, and V. I. Fel’dman, Geochem. Int. 41 (9), 865–881 (2003).

    Google Scholar 

  13. L. Folco, M. D’Orazio, M. Gemelli, and P. Rochette, Polar Sci. 10, 147‒159 (2016).

    Google Scholar 

  14. A. A. Ariskin, I. S. Fomin, E. V. Zharkova, and G. S. Nikolaev, Geochem. Int. 55 (7), 595–608 (2017).

    Google Scholar 

  15. H. D. Schreiber, L. M. Minnix, and G. B. Balazs, J. Non-Cryst. Solids 67, 349–359 (1984).

    Google Scholar 

  16. V. O. Osadchii, M. V. Fedkin, and E. G. Osadchii, Meteorit. Planet. Sci. 52 (10), 2275–2283 (2017).

    Google Scholar 

  17. R. Brett, Am. Mineral. 52, 721–733 (1967).

    Google Scholar 

  18. R. M. Mineeva, L. V. Bershov, A. S. Marfunin, V. I. Fel’dman, and A. V. Speranskii, Mineral. Zh. 6 (2), 30–35 (1984).

    Google Scholar 

  19. S. A. Vishnevsky and J. Raitala, in Proc. 66th Annu. Meteoritic. Soc. Meet. (Munster, 2003), Art No. 5072.

Download references

Funding

This study was carried out as part of a State Assignment of the Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences (project no. 0137-2019-0017) and was supported in part by the Russian Foundation for Basic Research (project no. 17-05-00713).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Lukanin.

Additional information

Translated by A. Bobrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukanin, O.A., Zharkova, E.V. & Senin, V.G. Redox State of Tektites from Different Scattering Fields: Evidence from the Data of Electrochemical Study of Intrinsic Oxygen Fugacity. Dokl. Earth Sc. 497, 295–299 (2021). https://doi.org/10.1134/S1028334X21040103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028334X21040103

Keywords:

Navigation