Skip to main content
Log in

Phase Composition and Thermal Properties of Yb-Gd Co-Doped SrZrO3 Coating Prepared by the Solution Precursor Plasma Spray

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Three different double rare-earth modified SrZrO3 coatings [Sr(Zr0.9Yb0.05Gd0.05)O2.95 (SZYG-1), Sr(Zr0.85Yb0.075Gd0.075)O2.925 (SZYG-2) and Sr(Zr0.8Yb0.1Gd0.1)O2.9 (SZYG-3)] were prepared by solution precursor plasma spray. X-ray diffraction results show that the SZYG-1 coating is composed of SrZrO3 solid solution and ZrO2 solid solution with fluorite structure, while the SZYG-2 and SZYG-3 coatings include SrZrO3 solid solution and rare-earth oxide solid solution with cubic structure. The thermal conductivity of the as-sprayed SZYG-2 coating is 0.69 W m−1 K−1 (1000 °C), which is the lowest among the three modified SrZrO3 coatings and is about 45% lower than that of SrZrO3 coating (1.25 W m−1 K−1, 1000 °C). Among the three modified SrZrO3 coatings, the increase of thermal conductivity of the SZYG-1 coating after heat treatment is the smallest. The thermal expansion coefficients of the as-sprayed SZYG-1, SZYG-2 and SZYG-3 coatings are 10.5 × 10−6 K−1, 10.5 × 10−6 K−1 and 10.1 × 10−6 K−1, respectively. The sintering coefficients of the SZYG-1, SZYG-2 and SZYG-3 coatings are 3.5 × 10−7 s−1, 6.59 × 10−6 s−1 and 8 × 10−6 s−1, respectively. The SZYG-1 coating has the best sintering resistance, followed by the SZYG-2 coating and the SZYG-3 coating. The SZYG-1 coating has good phase stability, low thermal conductivity, better sintering resistance, which is considered as a promising novel TBC material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.A. Miller, Current Status of Thermal Barrier Coatings—An Overview, Surf. Coat. Technol., 1987, 30(1), p 1–11.

    Article  CAS  Google Scholar 

  2. N.P. Padture, M. Gell and E.H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science, 2002, 296(5566), p 280–284.

    Article  CAS  Google Scholar 

  3. R. Vaßen, M.O. Jarligo, T. Steinke, D.E. Mack and D. Stöver, Overview on Advanced Thermal Barrier Coatings, Surf. Coat. Technol., 2010, 205(4), p 938–942.

    Article  Google Scholar 

  4. S. Yamanak, K. Kurosaki, O. Taku, H. Mut and M. Uno, Thermophysical Properties of Perovskite-Type Strontium Cerate and Zirconate, J. Am. Ceram. Soc., 2005, 88, p 1496–1499.

    Article  Google Scholar 

  5. Y. Zhang, D.E. Mack, M.O. Jarligo, X. Cao, R. Vassen and D. Stöver, Partial Evaporation of Strontium Zirconate During Atmospheric Plasma Spraying, J. Therm. Spray Technol., 2009, 18, p 694–701.

    Article  CAS  Google Scholar 

  6. D.D. Ligny and P. Richet, High-Temperature Heat Capacity and Thermal Expansion of SrTiO3 and SrZrO3 Perovskites, Phys. Rev. B Condens. Matter, 1996, 53(6), p 3013–3022.

    Article  Google Scholar 

  7. D. Souptel, G. Behr and A.M. Balbashov, SrZrO3 Single Crystal Growth by Floating Zone Technique with Radiation Heating, J. Cryst. Growth, 2002, 236(4), p 583–588.

    Article  CAS  Google Scholar 

  8. E. Mete, R. Shaltaf and S. Ellialtioglu, Electronic and Structural Properties of a 4d Perovskite: Cubic Phase of SrZrO3, Phys. Rev. B, 2003, 68, p 035119.

    Article  Google Scholar 

  9. W. Ma, D. Mack, J. Malzbender, R. Vaßen and D. Stöver, Yb2O3 and Gd2O3 Doped Strontium Zirconate for Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2008, 28(16), p 3071–3081.

    Article  CAS  Google Scholar 

  10. W. Ma, X. Meng, J. Wen, E. Li, Y. Bai, W. Chen and H. Dong, Aging Effect on Microstructure and Property of Strontium Zirconate Coating Co-Doped with Double Rare-Earth Oxides, J. Am. Ceram. Soc., 2019, 102(4), p 2143–2153.

    Article  CAS  Google Scholar 

  11. W. Ma, D. Mack, R. Vassen and D. Stöver, Perovskite-Type Strontium Zirconate as a New Material for Thermal Barrier Coatings, J. Am. Ceram. Soc., 2008, 91(8), p 2630–2635.

    Article  CAS  Google Scholar 

  12. X. Li, W. Ma, J. Wen, Y. Bai, L. Sun, B. Chen, H. Dong and Y. Shuang, Preparation of SrZrO3 Thermal Barrier Coating by Solution Precursor Plasma Spray, J. Therm. Spray Technol., 2017, 26(3), p 371–377.

    Article  CAS  Google Scholar 

  13. W. Ma, X. Li, X. Meng, Y. Xue, Y. Bai, W. Chen and H. Dong, Microstructure and Thermophysical Properties of SrZrO3 Thermal Barrier Coating Prepared by Solution Precursor Plasma Spray, J. Therm. Spray Technol., 2018, 27(7), p 1056–1063.

    Article  CAS  Google Scholar 

  14. W. Ma, X. Meng, X. Li, Y. Xue, Y. Bai, F. Guo and H. Dong, Deposition Characteristics of SrZrO3 Thermal Barrier Coating Prepared by Solution Precursor Plasma Spray Process, J. Therm. Spray Technol., 2019, 28(1–2), p 189–197.

    Article  CAS  Google Scholar 

  15. X. Meng, W. Ma, T. Yang, W. Huang, E. Li, Y. Bai, C. Liu and H. Dong, Microstructure and Thermal Properties of Double Rare-Earth Co-Doped SrZrO3 Coating by the Solution Precursor Plasma Spray, J. Therm. Spray Technol., 2020, 29(1), p 125–133.

    Article  CAS  Google Scholar 

  16. N. Jacobson, Thermodynamic Properties of Some Metal Oxide Zirconia Systems, National Aeronautics and Space Administration, New York, 1989.

    Google Scholar 

  17. U. Schulz, B. Saruhan, K. Fritscher and C. Leyens, Review on Advanced EB-PVD Ceramic Topcoats for TBC Applications, Int. J. Appl. Ceram. Technol., 2004, 1(4), p 302–315.

    Article  CAS  Google Scholar 

  18. X. Meng, E. Li, W. Huang, Y. Bai, W. Ma and R. Wang, Thermal Decomposition and Crystallization Behavior of Double Rare-Earth Co-Doped SrZrO3 Precursor used in the Solution Precursor Plasma Spray Process, Surf. Coat. Technol., 2019, 369(15), p 87–94.

    Article  CAS  Google Scholar 

  19. J. Zhang, Y. Bai, E. Li, H. Dong and W. Ma, Yb2O3-Gd2O3 Co-Doped Strontium Zirconate Composite Ceramics for Potential Thermal Barrier Coating Applications, Int. J. Appl. Ceram. Technol., 2020, 4(14), p 1608–1618.

    Article  Google Scholar 

  20. Z. Chen, X. Zhang and Y. Pei, Manipulation of Phonon Transport in Thermoelectrics, Adv. Mater., 2018, 2(17), p 1705617.

    Article  Google Scholar 

  21. P.G. Klemens and M. Gell, Thermal Conductivity of Thermal Barrier Coatings, Mater. Sci. Eng. A, 1998, 245(2), p 143–149.

    Article  Google Scholar 

  22. P.G. Klemens, The Scattering of Low-Frequency Lattice Waves by Static Imperfections, Proc. Phys. Soc., 1955, 68(12), p 1113–1128.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (52062040, 51672136, 51865044), National Science and Technology Major Project (2017-VII-0012-0108), Science and Technology Projects of Inner Mongolia Autonomous Region (2018-810, 2019-1356), and Aeronautical Science Foundation of China (201838Y3001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Ma, W., Meng, X. et al. Phase Composition and Thermal Properties of Yb-Gd Co-Doped SrZrO3 Coating Prepared by the Solution Precursor Plasma Spray. J Therm Spray Tech 30, 1174–1182 (2021). https://doi.org/10.1007/s11666-021-01201-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-021-01201-2

Keywords

Navigation