Skip to main content
Log in

A comparative experimental evaluation on performance of type-1 and interval type-2 Takagi-Sugeno fuzzy models

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

In the literature, there have been numerous studies demonstrating experimentally that type-2 fuzzy models outperform their type-1 counterparts. Although the advantages of these models seem to be well justified, the quantification of the improvements is not carefully evaluated and critically assessed in the existing studies. A thorough multi-objective experimental numeric evaluation of benefits of type-2 fuzzy models is still lacking. In this study, a numeric evaluation of the performance of type-1 and type-2 fuzzy models is carried out in terms of the criteria of accuracy and computing overhead, which leads to a thorough analysis of existing trade-offs between these two performance indexes. In the proposed numeric evaluation, type-2 fuzzy models are evaluated against their associated type-1 counterparts (the type-2 associated type-1 models sharing similar structure and the same development method). Three architectures of fuzzy models are involved in the comparative studies presented here: (1) fuzzy clustering method-based Takagi-Sugeno (TS) fuzzy models (Fuzzy C-Means based type-1, Fuzzy C-Means based interval type-2); (2) static TS-based fuzzy models (static type-1, A2C0, A2C1, EKFT2 and their associated type-1 models) and (3) evolving TS fuzzy models (SEIT2 and its associated type-1 counterpart, SCIT2 and its associated type-1 model). The experiments are carried out by involving 15 publicly available datasets. The accuracy of these two types of fuzzy models is assessed vis-a-vis their development time. Testing is involved to evaluate whether there are statistically significant differences between the performance of the type-2 and type-1 fuzzy models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Juang CF, Tsao YW (2008) A self-evolving interval type-2 fuzzy neural network with online structure and parameter learning. IEEE Trans Fuzzy Syst 16(6):1411–1424

    Article  Google Scholar 

  2. Mendel JM (2004) Computing derivatives in interval type-2 fuzzy logic systems. IEEE Trans Fuzzy Syst 12(1):84–98

    Article  Google Scholar 

  3. Lin YY, Chang JY, Lin CT (2013) A TSK-type-based self-evolving compensatory interval type-2 fuzzy neural network (TSCIT2FNN) and its applications. IEEE Trans Ind Electron 61(1):159–447

    Google Scholar 

  4. Khanesar MA, Kayacan E, Teshnehlab M, Kaynak O (2012) Extended Kalman filter based learning algorithm for type-2 fuzzy logic systems and its experimental evaluation. IEEE Trans Ind Electron 59(11):4443–4455

    Article  Google Scholar 

  5. Fay, MP, Proschan MA (2010) Wilcoxon-Mann-Whitney or t-test\(?\) On assumptions for hypothesis tests and multiple interpretations of decision rules. Stat Surv:1–39

  6. Takag T, Sugeno M (1985) Fuzzy identification of systems and its application to modeling and control. IEEE Trans Syst Man Cybern 15(1):116–132

    Article  Google Scholar 

  7. Sugeno M, Kang GT (1988) Structure identification of fuzzy model. Fuzzy Sets Syst 28(1):15–23

    Article  MathSciNet  MATH  Google Scholar 

  8. Xu W, Li W (2016) Granular computing approach to two-way learning based on formal concept analysis in fuzzy datasets. IEEE Trans Cybern 46(2):366–379

    Article  MathSciNet  Google Scholar 

  9. Pedrycz W, Gomide F (2007) Fuzzy systems engineering: toward human-centric computing. Wiley-IEEE Press, New York

    Book  Google Scholar 

  10. Han S, Liu X (2016) Global convergence of Karnik–Mendel algorithm. Fuzzy Sets Syst 283:108–119

    Article  MathSciNet  MATH  Google Scholar 

  11. Khanesar MA, Khakshour AJ, Kaynak O, Gao H (2017) Improving the speed of center of sets type reduction in interval type-2 fuzzy systems by eliminating the need for sorting. IEEE Trans Fuzzy Syst 25(5):1193–1206

    Article  Google Scholar 

  12. Liang Q, Mendel JM (1999) An introduction to type-2 TSK fuzzy logic systems. Proc IEEE Int Conf Fuzzy Syst 3:1534–1539

    Article  Google Scholar 

  13. Hwang C, Rhee FCH (2007) Uncertain fuzzy clustering: interval type-2 fuzzy approach to C-means. IEEE Trans Fuzzy Syst 15(1):107–120

    Article  Google Scholar 

  14. Lichman M (2020) UCI machine learning repository. http://archive.ics.uci.edu/ml

  15. Alcal-Fdez J, Fernandez A, Luengo J, Derrac J, Garca S, Snchez L, Herrera F (2011) KEEL data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. J Mult Valued Logic Soft Comput 17(2–3):255–287

    Google Scholar 

  16. Hassani H, Zarei J, Chadli M, Qiu J (2017) Unknown input observer design for interval type-2 T-S fuzzy systems with immeasurable premise variables. IEEE Trans Cybern 47(9):2639–2650

    Article  Google Scholar 

  17. Zhou H, Ying H (2017) Deriving and analyzing analytical structures of a class of typical interval type-2 TS fuzzy controllers. IEEE Trans Cybern 47(9):2492–2503

    Article  Google Scholar 

  18. Lee CH, Chang FY, Lin CM (2014) An efficient interval type-2 fuzzy CMAC for chaos time-series prediction and synchronization. IEEE Trans Cybern 44(3):329–341

    Article  Google Scholar 

  19. Li H, Wu C, Shi P, Gao Y (2015) Control of nonlinear networked systems with packet dropouts: interval type-2 fuzzy model-based approach. IEEE Trans Fuzzy Syst 45(11):2378–2389

    Google Scholar 

  20. Khanesar MA, Kayacan E, Reyhanoglu M, Kaynak O (2015) Feedback error learning control of magnetic satellites using type-2 fuzzy neural networks with elliptic membership functions. IEEE Trans Cybern 45(4):858–868

    Article  Google Scholar 

  21. Mendel JM, John RI, Liu F (2006) Interval type-2 fuzzy logic systems made simple. IEEE Trans Fuzzy Syst 14(6):808–821

    Article  Google Scholar 

  22. Liang Q, Mendel JM (2000) Interval type-2 fuzzy logic systems: theory and design. IEEE Trans Fuzzy Syst 8(5):535–550

    Article  Google Scholar 

  23. Wagner C, Hagras H (2000) Toward general type-2 fuzzy logic systems based on zSlices. IEEE Trans Fuzzy Syst 18(4):637–660

    Article  Google Scholar 

  24. Karnik NN, Mendel JM (1998) Type-2 fuzzy logic systems: type-reduction. Proc IEEE Syst Man Cybern 2:2046–2051

    Google Scholar 

  25. Wu D (2013) Approaches for reducing the computational cost of interval type-2 fuzzy logic systems: overview and comparison. IEEE Trans Fuzzy Syst 21(1):80–99

    Article  Google Scholar 

  26. Yeh CY, Roger Jeng WH, Lee SJ (2011) An enhanced type-reduction algorithm for type-2 fuzzy sets. IEEE Trans Fuzzy Syst 19(2):227–240

    Article  Google Scholar 

  27. Li W, Xue X, Xu W, Zhan T, Fan B (2020) Double-quantitative variable consistency dominance-based rough set approach. Int J Approx Reason 124:1–26

    Article  MathSciNet  MATH  Google Scholar 

  28. Hu H, Wang Y, Cai Y (2012) Advantages of the enhanced opposite direction searching algorithm for computing centroid of an interval type-2 fuzzy set. Asian J Control 14(5):1422–1430

    Article  MathSciNet  MATH  Google Scholar 

  29. Khanesar MA, Khakshour AJ, Kaynak O, Gao H (2017) Improving the speed of center of sets type reduction in interval type-2 fuzzy systems by eliminating the need for sorting. IEEE Trans Fuzzy Syst 25(5):1193–1206

    Article  Google Scholar 

  30. Gorzalczany MB (1988) Interval-valued fuzzy controller based on verbal model of object. Fuzzy Sets Syst 28(1):45–53

    Article  MathSciNet  MATH  Google Scholar 

  31. Liang Q, Mendel JM (2000) Equalization of nonlinear time-varying channels using type-2 fuzzy adaptive filters. IEEE Trans Fuzzy Syst 8(5):551–563

    Article  Google Scholar 

  32. Wu H, Mendel JM (2002) Uncertainty bounds and their use in the design of interval type-2 fuzzy logic systems. IEEE Trans Fuzzy Syst 10(5):622–639

    Article  Google Scholar 

  33. Li W, Pedrycz W, Xue X, Xu W, Fan B (2019) Fuzziness and incremental information of disjoint regions in double-quantitative decision-theoretic rough set model. Int J Mach Learn Cybern 10(10):2669–2690

    Article  Google Scholar 

  34. Coupland S, John R (2007) Geometric type-1 and type-2 fuzzy logic systems. IEEE Trans Fuzzy Syst 15(1):3–15

    Article  MATH  Google Scholar 

  35. Nie M, Tan WW (2008) Towards an efficient type-reduction method for interval type-2 fuzzy logic systems. IEEE Int Conf Fuzzy Syst:1425–1432

  36. Begian MB, Melek WW, Mendel JM (2008) Stability analysis of type-2 fuzzy systems. IEEE Int Conf Fuzzy Syst:947–953

  37. Greenfield S, Vhiclana F, Coupland S, John R (2009) The collapsing method of defuzzification for discretized interval type-2 fuzzy sets. Inf Sci 179:2055–2069

    Article  MATH  Google Scholar 

  38. Li C, Yi J, Zhao D (2008) A novel type-reduction method for interval type-2 fuzzy logic systems. Fuzzy Syst Knowl Discov 1:157–161

    Google Scholar 

  39. Du X, Ying H (2010) Derivation and analysis of the analytical structures of the interval type-2 fuzzy-PI and PD controllers. IEEE Trans Fuzzy Syst 18(4):802–814

    Article  Google Scholar 

  40. Tao CW, Taur JS, Chang CW, Chang YH (2012) Simplified type-2 fuzzy sliding controller for wing rock system. Fuzzy Sets Syst 207:111–129

    Article  MathSciNet  MATH  Google Scholar 

  41. Abiyev RH, Kaynak O (2010) Type-2 fuzzy neural structure for identification and control of time-varying plants. IEEE Trans Ind Electron 57(12):4147–4159

    Article  Google Scholar 

  42. Pratama M, Lu J, Lughofer E, Zhang G, Er MJ (2017) An incremental learning of concept drifts using evolving type-2 recurrent fuzzy neural networks. IEEE Trans Fuzzy Syst 25(5):1175–1192

    Article  Google Scholar 

  43. Wu D, Tan WW (2004) A simplified architecture for type-2 FLSs and its application to nonlinear control. IEEE Conf Cybern Intell Syst:485–490

  44. Ying H (2008) General interval type-2 Mamdani fuzzy systems are universal approximators. North American Fuzzy Information Processing Society, pp 1–6

  45. Ying H (2009) Interval type-2 Takagi-Sugeno fuzzy systems with linear rule consequent are universal approximators. North American Fuzzy Information Processing Society, pp 1–5

  46. Wang LX, Mendel JM (1992) Fuzzy basis functions, universal approximation, and orthogonal least-squares learning. IEEE Trans Neural Netw 3(5):807–814

    Article  Google Scholar 

  47. Wang LX (1994) Fuzzy systems are universal approximators. IEEE Trans Comput 43(11):1329–1333

    Article  MATH  Google Scholar 

  48. Hu X, Pedrycz W, Wang X (2017) Granular fuzzy rule-based methods: a study in a comprehensive evaluation and construction on fuzzy models. IEEE Trans Fuzzy Syst 25(5):1342–1355

    Article  Google Scholar 

  49. Karnik NN, Mendel JM (2001) Centroid of a type-2 fuzzy set. Inf Sci 132(1–4):195–220

    Article  MathSciNet  MATH  Google Scholar 

  50. Chang X, Wang Q, Liu Y, Wang Y (2017) Sparse regularization in Fuzzy C-Means for high-dimensional data clustering. IEEE Trans Cybern 47(9):2616–2627

    Article  Google Scholar 

  51. Li L, Ding SX, Qiu J, Yang Y (2017) Real-time fault detection approach for nonlinear systems and its asynchronous T-S fuzzy observer-based implementation. IEEE Trans Cybern 47(2):283–294

    Google Scholar 

  52. Wu ZG, Dong S, Su H, Li C (2017) Asynchronous dissipative control for fuzzy Markov jump systems. IEEE Trans Cybern 48(8):2426–2436

    Google Scholar 

  53. Wang L, Lam HK (2018) New stability criterion for continuous-time Takagi-Sugeno fuzzy systems with time-varying delay. IEEE Trans Cybern 49(4):1551–1556

    Article  Google Scholar 

  54. Li W, Pedrycz W, Xue X, Xu W, Fan B (2018) Distance-based double-quantitative rough fuzzy sets with logic operations. Int J Approx Reason 101:206–233

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This paper is supported by the National Natural Science Foundation of China (Nos. 61772002, 61976245), the Fundamental Research Funds for the Central Universities (Nos. XDJK2019B029, SWU119045, SWU119063, SWU119043)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wentao Li.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, K., Li, W., Xu, W. et al. A comparative experimental evaluation on performance of type-1 and interval type-2 Takagi-Sugeno fuzzy models. Int. J. Mach. Learn. & Cyber. 12, 2135–2150 (2021). https://doi.org/10.1007/s13042-021-01298-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-021-01298-5

Keywords

Navigation