Skip to main content
Log in

miR-21 Exerts Anti-proliferative and Pro-apoptotic Effects in LPS-induced WI-38 Cells via Directly Targeting TIMP3

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease, which was caused by a complex interplay of inflammatory responses and chronic damage. miR-21 is increased in patients with IPF, but its function in the embryonic lung-derived diploid fibroblasts cells subjected to LPS is elusive. miRNA expression profile was obtained from GEO database and target genes of miRNAs were forecasted by TargetScan. To mimic the LPS-induced injury, different concentrations of LPS were applied to treat WI-38 cells. Functional in vitro experiments were conducted to examine the role of miR-21 and TIMP3. Luciferase report assay was performed to verify the relationship between miR-21 and TIMP3. qRT-PCR, western blotting, and ELISA were conducted to detect the levels of the related miRNAs, proteins, and inflammatory factors. miR-21 presented higher levels in interstitial pneumonia patients and LPS-induced WI-38 cells. Overexpression of miR-21 was negatively correlated with the proliferative capability of LPS-treated WI-38 cells. miR-21 directly targets TIMP3. TIMP3 restored the suppressive impact of miR-21 mimic on the proliferation, while TIMP3 alleviated the promoting impact of miR-21 mimic on the apoptosis of WI-38 cells treated by LPS. miR-21 inhibited Bcl-2 but increased Bax, cleaved caspase-3, and cleaved caspase-9. Besides, miR-21 elevated the levels of IL-6 and IL-β but reduced the IL-10, which were weakened by TIMP3. Totally, miR-21 aggravated the LPS-induced lung injury and modulated inflammatory responses by targeting TIMP3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Traila, D., Oancea, C., Tudorache, E., Mladinescu, O. F., Timar, B., & Tudorache, V. (2018). Clinical profile of unclassifiable interstitial lung disease: Comparison with chronic fibrosing idiopathic interstitial pneumonias. The Journal of International Medical Research, 46(1), 448–456.

    Article  PubMed  Google Scholar 

  2. Wolters, P. J., Collard, H. R., & Jones, K. D. (2014). Pathogenesis of idiopathic pulmonary fibrosis. Annual Review of Pathology, 9, 157–179.

    Article  CAS  PubMed  Google Scholar 

  3. Quinn, C., Wisse, A., & Manns, S. T. (2019). Clinical course and management of idiopathic pulmonary fibrosis. Multidisciplinary Respiratory Medicine, 14, 35.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Guenther, A., Krauss, E., Tello, S., Wagner, J., Paul, B., & Kuhn, S., et al. (2018). The European IPF registry (eurIPFreg): Baseline characteristics and survival of patients with idiopathic pulmonary fibrosis. Respiratory Research, 19(1), 141.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wuyts, W. A., Dahlqvist, C., Slabbynck, H., Schlesser, M., Gusbin, N., & Compere, C., et al. (2019). Longitudinal clinical outcomes in a real-world population of patients with idiopathic pulmonary fibrosis: The PROOF registry. Respiratory Research, 20(1), 231.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Doubkova, M., Svancara, J., Svoboda, M., Sterclova, M., Bartos, V., & Plackova, M., et al. (2018). EMPIRE Registry, Czech Part: Impact of demographics, pulmonary function and HRCT on survival and clinical course in idiopathic pulmonary fibrosis. The Clinical Respiratory Journal, 12(4), 1526–1535.

    Article  PubMed  Google Scholar 

  7. Saco, T. V., Parthasarathy, P. T., Cho, Y., Lockey, R., & Kolliputi, N. (2015). Micro RNAs: The future of idiopathic pulmonary fibrosis therapy. Cell Biochemistry and Biophysics, 71(1), 509–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Du, P., Wang, L., Sliz, P., & Gregory, R. I. (2015). A biogenesis step upstream of microprocessor controls miR-17 approximately 92 expression. Cell, 162(4), 885–899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nuovo, G. J., Elton, T. S., Nana-Sinkam, P., Volinia, S., Croce, C. M., & Schmittgen, T. D. (2009). A methodology for the combined in situ analyses of the precursor and mature forms of microRNAs and correlation with their putative targets. Nature Protocols, 4(1), 107–115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xu, Y. Z., Xi, Q. H., Ge, W. L., & Zhang, X. Q. (2013). Identification of serum microRNA-21 as a biomarker for early detection and prognosis in human epithelial ovarian cancer. Asian Pacific Journal of Cancer Prevention, 14(2), 1057–1060.

    Article  PubMed  Google Scholar 

  11. Wang, Q., Zhang, L. (2019). Possible molecular mechanisms for the roles of microRNA-21 played in lung cancer. Technology Cancer Research & Treatment, 18, 1533033819875130.

  12. Ni, K., Wang, D., Xu, H., Mei, F., Wu, C. & Liu, Z. et al. (2019). miR-21 promotes non-small cell lung cancer cells growth by regulating fatty acid metabolism. Cancer Cell International, 19, 219.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. An, Y. & Yang, Q. (2020). MiR-21 modulates the polarization of M2 macrophages and increases the effects of M2 macrophages on promoting the chemoresistance of ovarian cancer. Life Sciences, 242, 117162.

    Article  PubMed  CAS  Google Scholar 

  14. Liu, Q., Liu, S. & Wang, D. (2020). Overexpression of microRNA-21 decreased the sensitivity of advanced cervical cancer to chemoradiotherapy through SMAD7. Anticancer Drugs, 31(3), 272–281.

    Article  CAS  PubMed  Google Scholar 

  15. Irimie-Aghiorghiesei, A. I., Pop-Bica, C., Pintea, S., Braicu, C., Cojocneanu, R. & Zimta, A. A. et al. (2019). Prognostic value of MiR-21: An updated meta-analysis in Head and Neck Squamous Cell Carcinoma (HNSCC). Journal of Clinical Medicine, 8(12), 2041.

    Article  PubMed Central  CAS  Google Scholar 

  16. Saheb Sharif-Askari, N., Saheb Sharif-Askari, F., Guraya, S. Y., Bendardaf, R. & Hamoudi, R. (2020). Integrative systematic review meta-analysis and bioinformatics identifies MicroRNA-21 and its target genes as biomarkers for colorectal adenocarcinoma. International. Journal of Surgery (London,England), 73, 113–122.

    Article  Google Scholar 

  17. Motamedi, M., Hashemzadeh Chaleshtori, M., Ghasemi, S., & Mokarian, F. (2019). Plasma level of miR-21 and miR-451 in primary and recurrent breast cancer patients. Breast Cancer (Dove Medical Press), 11, 293–301.

    Google Scholar 

  18. Xiao, T. & Jie, Z. (2019). MiR-21 promotes the invasion and metastasis of gastric cancer cells by activating epithelial-mesenchymal transition. European Surgical Research, 60(5–6), 208–218.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, N., Hu, Z. & Qiang, Y. (2019). Circulating miR-130b- and miR-21-based diagnostic markers and therapeutic targets for hepatocellular carcinoma. Molecular Genetics & Genomic Medicine, 7(12), e1012.

    Article  CAS  Google Scholar 

  20. Abd-El-Fattah, A. A., Sadik, N. A., Shaker, O. G., & Aboulftouh, M. L. (2013). Differential microRNAs expression in serum of patients with lung cancer, pulmonary tuberculosis, and pneumonia. Cell Biochemistry and Biophysics, 67(3), 875–884.

    Article  CAS  PubMed  Google Scholar 

  21. Li, P., Zhao, G. Q., Chen, T. F., Chang, J. X., Wang, H. Q., & Chen, S. S., et al. (2013). Serum miR-21 and miR-155 expression in idiopathic pulmonary fibrosis. The Journal of Asthma, 50(9), 960–964.

    Article  CAS  PubMed  Google Scholar 

  22. Liu, L., Yin, H., Huang, M., He, J., Yi, G. & Wang, Z. et al.(2016). [miR-21 promotes pulmonary fibrosis in rats via down-regulating the expression of ADAMTS-1]. Xi bao yu fen zi mian yi xue za zhi = Chinese Journal of Cellular and Molecular Immunology, 32(12), 1636–1640.

    PubMed  Google Scholar 

  23. Liu, G., Friggeri, A., Yang, Y., Milosevic, J., Ding, Q., & Thannickal, V. J., et al. (2010). miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. The Journal of Experimental Medicine, 207(8), 1589–1597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Moschos, S. A., Williams, A. E., Perry, M. M., Birrell, M. A., Belvisi, M. G., & Lindsay, M. A. (2007). Expression profiling in vivo demonstrates rapid changes in lung microRNA levels following lipopolysaccharide-induced inflammation but not in the anti-inflammatory action of glucocorticoids. BMC Genomics, 8, 240.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Su, C. W., Chang, Y. C. & Chien, M. H. (2019). Loss of TIMP3 by promoter methylation of Sp1 binding site promotes oral cancer metastasis. Cell Death & Disease, 10(11), 793.

    Article  CAS  Google Scholar 

  26. Huang, H. L., Liu, Y. M., Sung, T. Y., Huang, T. C., Cheng, Y. W., & Liou, J. P., et al. (2019). TIMP3 expression associates with prognosis in colorectal cancer and its novel arylsulfonamide inducer, MPT0B390, inhibits tumor growth, metastasis and angiogenesis. Theranostics, 9(22), 6676–6689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jiang, C., Xia, W., Wu, T., Pan, C., Shan, H. & Wang, F. et al.(2020). Inhibition of microRNA-222 up-regulates TIMP3 to promotes osteogenic differentiation of MSCs from fracture rats with type 2 diabetes mellitus. Journal of Cellular and molecular Medicine, 24(1), 686–694.

    Article  CAS  PubMed  Google Scholar 

  28. Liu, H., Jing, X., Dong, A., Bai, B., & Wang, H. (2017). Overexpression of TIMP3 protects against cardiac ischemia/reperfusion injury by inhibiting myocardial apoptosis through ROS/Mapks pathway. Cellular Physiology and Biochemistry, 44(3), 1011–1023.

    Article  CAS  PubMed  Google Scholar 

  29. Korytina, G. F., Akhmadishina, L. Z., Viktorova, E. V., Tselousova, O. S., Danilko, K. V., & Kochetova, O. V., et al. (2013). Extracellular matrix remodeling genes polymorphisms and risk of chronic bronchitis and recurrent pneumonia in children. Journal of Human Genetics, 58(7), 467–474.

    Article  CAS  PubMed  Google Scholar 

  30. Liu, M., Han, T., Shi, S., & Chen, E. (2018). Long noncoding RNA HAGLROS regulates cell apoptosis and autophagy in lipopolysaccharides-induced WI-38 cells via modulating miR-100/NF-κB axis. Biochemical and Biophysical Research Communications, 500(3), 589–596.

    Article  CAS  PubMed  Google Scholar 

  31. Zhou, Z., Zhu, Y., Gao, G., & Zhang, Y. (2019). Long noncoding RNA SNHG16 targets miR-146a-5p/CCL5 to regulate LPS-induced WI-38 cell apoptosis and inflammation in acute pneumonia. Life Sciences, 228, 189–197.

    Article  CAS  PubMed  Google Scholar 

  32. Horimasu, Y. & Ishikawa, N. (2017). Gene expression profiling of idiopathic interstitial pneumonias (IIPs): Identification of potential diagnostic markers and therapeutic targets. BMC Medical Genetics, 18(1), 88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Xaubet, A., Ancochea, J., & Molina-Molina, M. (2017). Idiopathic pulmonary fibrosis. Medicina Clinica, 148(4), 170–175.

    Article  PubMed  Google Scholar 

  34. Sheng, G., Chen, P., Wei, Y., Yue, H., Chu, J. & Zhao, J. et al.(2019). Viral infection increases the risk of idiopathic pulmonary fibrosis: A meta-analysis. Chest, 157(5), 1175–1187.

    Article  PubMed  CAS  Google Scholar 

  35. Spagnolo, P. & Molyneaux, P. L. (2019). The role of the lung’s microbiome in the pathogenesis and progression of idiopathic pulmonary fibrosis. International Journal of Molecular Science, 20(22), 5618.

    Article  CAS  Google Scholar 

  36. Berschneider, B., Ellwanger, D. C., Baarsma, H. A., Thiel, C., Shimbori, C., & White, E. S., et al. (2014). miR-92a regulates TGF-beta1-induced WISP1 expression in pulmonary fibrosis. The International Journal of Biochemistry & Cell Biology, 53, 432–441.

    Article  CAS  Google Scholar 

  37. Bodempudi, V., Hergert, P., Smith, K., Xia, H., Herrera, J., & Peterson, M., et al. (2014). miR-210 promotes IPF fibroblast proliferation in response to hypoxia. American Journal of Physiology Lung Cellular and Molecular Physiology, 307(4), L283–L294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang, S., Liu, H., Liu, Y., Zhang, J., Li, H. & Liu, W. et al.(2017). miR-30a as potential therapeutics by targeting TET1 through regulation of Drp-1 promoter hydroxymethylation in idiopathic pulmonary fibrosis. International Journal of Molecular Sciences, 18(3), 633.

    Article  PubMed Central  CAS  Google Scholar 

  39. Kurowska-Stolarska, M., Hasoo, M. K., Welsh, D. J., Stewart, L., McIntyre, D., & Morton, B. E., et al. (2017). The role of microRNA-155/liver X receptor pathway in experimental and idiopathic pulmonary fibrosis. The Journal of Allergy and Clinical Immunology, 139(6), 1946–1956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu, B., Li, R., Zhang, J., Meng, C., Zhang, J., & Song, X., et al. (2018). MicroRNA-708-3p as a potential therapeutic target via the ADAM17-GATA/STAT3 axis in idiopathic pulmonary fibrosis. Experimental & Molecular Medicine, 50(3), e465.

    Article  CAS  Google Scholar 

  41. Bahudhanapati, H., Tan, J., & Dutta, J. A. (2019). MicroRNA-144-3p targets relaxin/insulin-like family peptide receptor 1 (RXFP1) expression in lung fibroblasts from patients with idiopathic pulmonary fibrosis. Journal of Biological Chemistry, 294(13), 5008–5022.

    Article  CAS  Google Scholar 

  42. Disayabutr, S., Kim, E. K., Cha, S. I., Green, G., Naikawadi, R. P., & Jones, K. D., et al. (2016). miR-34 miRNAs regulate cellular senescence in type II alveolar epithelial cells of patients with idiopathic pulmonary fibrosis. PloS ONE, 11(6), e0158367.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Liang, H., Gu, Y., Li, T., Zhang, Y., Huangfu, L., & Hu, M., et al. (2014). Integrated analyses identify the involvement of microRNA-26a in epithelial-mesenchymal transition during idiopathic pulmonary fibrosis. Cell Death & Disease, 5, e1238.

    Article  CAS  Google Scholar 

  44. Diaz-Pina, G., Ordonez-Razo, R. M., Montes, E., Paramo, I., Becerril, C., & Salgado, A., et al. (2018). The role of ADAR1 and ADAR2 in the regulation of miRNA-21 in idiopathic pulmonary fibrosis. Lung, 196(4), 393–400.

    Article  CAS  PubMed  Google Scholar 

  45. Makiguchi, T., Yamada, M., Yoshioka, Y., Sugiura, H., Koarai, A., & Chiba, S., et al. (2016). Serum extracellular vesicular miR-21-5p is a predictor of the prognosis in idiopathic pulmonary fibrosis. Respiratory Research, 17(1), 110.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Fan, L. & Yu, X. (2017). Analysis of microarray-identified genes and microRNAs associated with idiopathic pulmonary fibrosis. Mediators of Inflammation, 2017, 1804240.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Zhang, Y., Yang, J., Zhou, X., Wang, N., Li, Z., & Zhou, Y., et al. (2019). Knockdown of miR-222 inhibits inflammation and the apoptosis of LPS-stimulated human intervertebral disc nucleus pulposus cells. International Journal of Molecular Medicine, 44(4), 1357–1365.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Garcia-Alvarez, J., Ramirez, R., Checa, M., Nuttall, R. K., Sampieri, C. L., & Edwards, D. R., et al. (2006). Tissue inhibitor of metalloproteinase-3 is up-regulated by transforming growth factor-beta1 in vitro and expressed in fibroblastic foci in vivo in idiopathic pulmonary fibrosis. Experimental Lung Research, 32(5), 201–214.

    Article  CAS  PubMed  Google Scholar 

  49. Li, C., Jiao, G., Wu, W., Wang, H., Ren, S., & Zhang, L., et al. (2019). Exosomes from bone marrow mesenchymal stem cells inhibit neuronal apoptosis and promote motor function recovery via the Wnt/beta-catenin signaling pathway. Cell Transplant, 28(11), 1373–1383.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kuwano, K., Hagimoto, N., Tanaka, T., Kawasaki, M., Kunitake, R., & Miyazaki, H., et al. (2000). Expression of apoptosis-regulatory genes in epithelial cells in pulmonary fibrosis in mice. The Journal of Pathology, 190(2), 221–229.

    Article  CAS  PubMed  Google Scholar 

  51. Kuwano, K., Kunitake, R., Maeyama, T., Hagimoto, N., Kawasaki, M., & Matsuba, T., et al. (2001). Attenuation of bleomycin-induced pneumopathy in mice by a caspase inhibitor. American Journal of Physiology Lung Cellular and Molecular Physiology, 280(2), L316–L325.

    Article  CAS  PubMed  Google Scholar 

  52. Ronan, N., Bennett, D. M., Khan, K. A., McCarthy, Y., Dahly, D. & Bourke, L. et al.(2018). Tissue and bronchoalveolar lavage biomarkers in idiopathic pulmonary fibrosis patients on pirfenidone. Lung, 196(5), 543–552.

    Article  CAS  PubMed  Google Scholar 

  53. Chen, N.-Y., Collum, S.D., Luo, F., Weng, T., Le, T.-T., & Hernandez, A.M., et al. (2016). Macrophage bone morphogenic protein receptor 2 depletion in idiopathic pulmonary fibrosis and Group III pulmonary hypertension. American Journal of Physiology Lung Cellular and Molecular Physiology, 311(2), L238–L254.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Cho, S. J., Hong, K. S., Jeong, J. H., Lee, M., Choi, A. M. K., & Stout-Delgado, H. W., et al. (2019). DROSHA-dependent AIM2 inflammasome activation contributes to lung inflammation during idiopathic pulmonary fibrosis. Cell, 8(8), 938.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Xiu Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, JX., Li, Y., Xia, T. et al. miR-21 Exerts Anti-proliferative and Pro-apoptotic Effects in LPS-induced WI-38 Cells via Directly Targeting TIMP3. Cell Biochem Biophys 79, 781–790 (2021). https://doi.org/10.1007/s12013-021-00987-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-021-00987-w

Keywords

Navigation