Skip to main content
Log in

Efficient designs of reversible sequential circuits

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Recently, the synthesis of reversible sequential circuits has attracted researchers’ attention for implementing low-power logic designs. So far, the direct and replacement techniques have been used in the reversible sequential circuits design. The replacement technique leads to high quantum cost. There is the principle to look for efficient reversible circuits composed of Clifford + T gates by optimizing quantum cost, the number of T gates, and particularly the T-depth of the circuit, which depends on the type and layout of the reversible gates used in the function. This paper has proposed an optimized version of direct feedback technique without any flip-flops and is performed on several samples of reversible circuits design, such as counters and shift registers. It has been shown that by partial changes in the direct technique, quantum cost and other cost metrics have been improved. It has also displayed some efficient designs of the reversible parallel-to-serial converter with parity capability and low-cost design of the control unit for a reversible self-controlled serial adder system. The analysis and comparison depict that all new proposed designs have optimized the existing works in terms of performance variables, including quantum cost, number of T gates, and T-depth of the circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig.11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Landauer R (1961) Irreversibility and heat generation in the computing process. IBM J Res Dev 5(3):183–191

    Article  MathSciNet  Google Scholar 

  2. Bennett CH, Landauer R (1985) The fundamental physical limits of computation. Sci Am 253(1):48–57

    Article  Google Scholar 

  3. Kotiyal S, Thapliyal H, Ranganathan N (2015) Reversible logic based multiplication computing unit using binary tree data structure. J Supercomput 71(7):2668–2693

    Article  Google Scholar 

  4. Babu HMH, Mia MS, Biswas AK (2017) Efficient techniques for fault detection and correction of reversible circuits. J Electron Test 33(5):591–605

    Article  Google Scholar 

  5. Toffoli T (1980) Reversible computing. International colloquium on automata, languages, and programming. Springer, pp 632–644

    Chapter  Google Scholar 

  6. Nashiry MA, Bhaskar GG, Rice JE (2015) Online testing for three fault models in reversible circuits. In: 2015 IEEE International Symposium on Multiple-Valued Logic IEEE, pp 8–13

  7. Kalantari Z, Eshghi M, Mohammadi M, Jassbi S (2019) Low-cost and compact design method for reversible sequential circuits. J Supercomput 75(11):7497–7519

    Article  Google Scholar 

  8. Khan MH, Rice JE (2018) First steps in creating online testable reversible sequential circuits. VLSI Design. https://doi.org/10.1155/2018/6153274

    Article  MathSciNet  Google Scholar 

  9. Khan MH (2013) Design of reversible synchronous sequential circuits using pseudo Reed-Muller expressions. IEEE Trans VLSI syst 22(11):2278–2286

    Article  Google Scholar 

  10. Nashiry MA, Rice JE (2019) Achieving fault tolerance in reversible computing. Int J Sci Eng Res 10(5):52–56

    Google Scholar 

  11. Nashiry MA, Rice JE (2017) A reversible majority voter circuit and applications. In: 2017 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM) IEEE, pp 1–6

  12. Nashiry, MA. Khan, MH. & Rice, JE. (2017). Controlled and uncontrolled swap gates in reversible logic synthesis. In International Conference on Reversible Computation, Springer, Cham, pp 141–147

  13. Handique M, Biswas S, Deka JK (2019) Test generation for bridging faults in reversible circuits using path-level expressions. J Electron Test 35(4):441–457

    Article  Google Scholar 

  14. de Almeida AA, Dueck GW, da Silva AC (2018) Efficient realizations of CNOT gates in IBM’s quantum computers. In: 2018 8th International Symposium on Embedded Computing and System Design (ISED) IEEE, pp 58–62

  15. Miller DM, Wille R, Sasanian Z (2011) Elementary quantum gate realizations for multiple-control Toffoli gates. In: 2011 41st IEEE International Symposium on Multiple-Valued Logic IEEE, pp 288–293

  16. de Almeida AA, Dueck GW, da Silva ACR (2019) Efficient realization of toffoli and ncv circuits for IBM QX architectures. In: International Conference on Reversible Computation, Springer, Cham. pp 131–145

  17. Gaur HM, Singh AK, Ghanekar U (2015) A review on online testability for reversible logic. Proced Comput Sci 70:384–391

    Article  Google Scholar 

  18. Mohammadi M, Eshghi M (2009) On figures of merit in reversible and quantum logic designs. Quantum Inf Process 8(4):297–318

    Article  MathSciNet  Google Scholar 

  19. Jayashree HV, Thapliyal H, Arabnia HR, Agrawal VK (2016) Ancilla-input and garbage-output optimized design of a reversible quantum integer multiplier. J Supercomput 72(4):1477–1493

    Article  Google Scholar 

  20. Arabzadeh, M. Zamani, M. Sedighi, M. & Saeedi, M. (2011). Logical-depth-oriented reversible logic synthesis. In Proceedings of the International Workshop on Logic and Synthesis.

  21. Thapliyal H, Munoz-Coreas E, Varun TSS, Humble T (2019) Quantum circuit designs of integer division optimizing T-count and T-depth. IEEE Tran Emerg Top Comput. https://doi.org/10.1109/TETC.2019.2910870

    Article  Google Scholar 

  22. Zulehner, A. Paler, A. & Wille, R. (2018). Efficient mapping of quantum circuits to the IBM QX architectures. In 2018 Design, Automation Test in Europe Conference Exhibition (DATE)

  23. Abdessaied N, Amy M, Soeken M, Drechsler R (2016) Technology mapping of reversible circuits to Clifford+ T quantum circuits. In: 2016 IEEE 46th international symposium on multiple-valued logic (ISMVL) IEEE, pp 150–155

  24. Thapliyal H, Srinivas MB, Zwolinski M (2005) A beginning in the reversible logic synthesis of sequential circuits.

  25. Fredkin E, Toffoli T (1982) Conservative logic. Int J Theor Phys 21(3–4):219–253

    Article  MathSciNet  Google Scholar 

  26. Nayeem NM, Hossain MA, Jamal L, Babu HMH (2009) Efficient design of shift registers using reversible logic. In: 2009 International Conference on Signal Processing Systems IEEE, pp 474–478

  27. Thapliyal H, Ranganathan N (2010) Design of reversible sequential circuits optimizing quantum cost, delay, and garbage outputs. ACM J Emerg Technol Comput Syst 6(4):1–31

    Article  Google Scholar 

  28. Khan MH, Perkowski M (2011) Synthesis of reversible synchronous counters. In: 2011 41st IEEE International Symposium on Multiple-Valued Logic IEEE, pp 242–247

  29. Khan MH, Rice JE (2016) Improved synthesis of reversible sequential circuits. In: 2016 IEEE International Symposium on Circuits and Systems (ISCAS) IEEE, pp 2302–2305

  30. Qi X, Zhu H, Chen F, Zhu J, Zhang Z (2016) Novel designs of quantum reversible counters. Int J Theor Phys 55(11):4987–4998

    Article  Google Scholar 

  31. Krishnaveni D, Priya MG (2017) A novel reversible n–bit counter for low power quantum computing. Int J Control Theory Appl 10:11–20

    Google Scholar 

  32. Maity H, Biswas A, Bhattacharjee AK, Pal A (2018) Quantum cost optimized design of 4-bit reversible universal shift register using reduced number of logic gate. Int J Quantum Inform 16(02):1850016

    Article  MathSciNet  Google Scholar 

  33. Noorallahzadeh M, Mosleh M (2019) Efficient designs of reversible latches with low quantum cost. IET Circuits Devices Syst 13(6):806–815

    Article  Google Scholar 

  34. Nashiry, MA. (2017). Synthesis, testing and tolerance in reversible logic (Doctoral dissertation, Lethbridge, Alta.: University of Lethbridge, Dept. of Mathematics and Computer Sciences).

  35. Miller, D. M., Soeken, M., & Drechsler, R. (2014, July). Mapping NCV circuits to optimized Clifford+T circuits. In International Conference on Reversible Computation, Springer, Cham. pp 163–175

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Haghparast.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kheirandish, D., Haghparast, M., Reshadi, M. et al. Efficient designs of reversible sequential circuits. J Supercomput 77, 13828–13862 (2021). https://doi.org/10.1007/s11227-021-03735-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-021-03735-2

Keywords

Navigation