Skip to main content
Log in

Diffusion assessment through image processing: beyond the point-source paradigm

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The quantification of transport processes of different substances in the brain’s parenchyma is important in the context of understanding brain functioning. Most of the currently used methods for assessment of the effective diffusion coefficient rely on the point-source paradigm. We propose a method for the quantitative characterization of the diffusion process in the brain’s parenchyma using a set of images recorded during the spreading of a fluorescent dye. Our method uses the frame-by-frame comparison of such images with a set of computed images that would be observed for an ideal diffusion process within the same topology of the tissue’s part. We obtain this reference set of images using blurring the image with an appropriate kernel function, and the degree of such blurring correlates with the parameters of a dye spreading process and the transport coefficients. We demonstrate the applicability of the proposed method using (i) the simulated surrogate data, (ii) the set of fluorescent images of the isolated event of blood-brain barrier opening, and (iii) the images of massive multi-source spreading of fluorescent dye.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C. Nicholson, S. Hrabětová, Biophys. J. 113, 2133 (2017)

    Article  Google Scholar 

  2. Y. Lei, H. Han, F. Yuan, A. Javeed, Y. Zhao, Progress Neurobiol. 157, 230 (2017)

    Article  Google Scholar 

  3. C. Nicholson, Diffusive Spreading in Nature, Technology and Society (Springer, Cham, 2018), pp. 93–114

    Book  Google Scholar 

  4. M. Nedergaard, Science 340, 1529 (2013)

    Article  Google Scholar 

  5. J.J. Iliff, M. Wang, Y. Liao, B.A. Plogg, W. Peng, G.A. Gundersen, H. Benveniste, G.E. Vates, R. Deane, S.A. Goldman et al., Sci. Transl. Med. 4, 147ra111 (2012)

    Article  Google Scholar 

  6. B.A. Plog, M. Nedergaard, Ann. Rev. Pathol. Mech. Dis. 13, 379 (2018)

    Article  Google Scholar 

  7. B.J. Jin, A.J. Smith, A.S. Verkman, J. Gen. Physiol. 148, 489 (2016)

    Article  Google Scholar 

  8. A.J. Smith, A.S. Verkman, FASEB J. 32, 543 (2018)

    Article  Google Scholar 

  9. N.J. Abbott, M.E. Pizzo, J.E. Preston, D. Janigro, R.G. Thorne, Acta Neuropathol. 135, 387 (2018)

    Article  Google Scholar 

  10. H. Mestre, Y. Mori, M. Nedergaard, Trends Neurosci. 49, 458–466 (2020). https://doi.org/10.1016/j.tins.2020.04.003

    Article  Google Scholar 

  11. L. Ray, J.J. Iliff, J.J. Heys, Fluids Barriers CNS 16, 6 (2019)

    Article  Google Scholar 

  12. S.B. Hladky, M.A. Barrand, Fluids Barriers CNS 16, 24 (2019)

    Article  Google Scholar 

  13. L.M. Hablitz, V. Plá, M. Giannetto, H.S. Vinitsky, F.F. Stæger, T. Metcalfe, R. Nguyen, A. Benrais, M. Nedergaard, Nat. Commun. 11, 1 (2020)

    Article  Google Scholar 

  14. E. Syková, C. Nicholson, Physiol. Rev. 88, 1277 (2008)

    Article  Google Scholar 

  15. H.L. Weissberg, J. Appl. Phys. 34, 2636 (1963)

    Article  Google Scholar 

  16. J. Kalnin, E. Kotomin, J. Maier, J. Phys. Chem. Solids 63, 449 (2002)

    Article  Google Scholar 

  17. C. Nicholson, J.M. Phillips, J. Physiol. 321, 225 (1981)

    Article  Google Scholar 

  18. C. Nicholson, P. Kamali-Zare, L. Tao, Comput. Vis. Sci. 14, 309 (2011)

    Article  Google Scholar 

  19. J. Hrabe, S. Hrabĕtová, K. Segeth, Biophys. J. 87, 1606 (2004)

    Article  Google Scholar 

  20. S. Mériaux, A. Conti, B. Larrat, Front. Phys. 6, 38 (2018)

    Article  Google Scholar 

  21. O. Semyachkina-Glushkovskaya, A. Abdurashitov, A. Dubrovsky, D. Bragin, O. Bragina, N. Shushunova, G. Maslyakova, N. Navolokin, A. Bucharskaya, V. Tuchind et al., J. Biomed. Opt. 22, 121719 (2017)

    Article  Google Scholar 

  22. O. Semyachkina-Glushkovskaya, V. Chehonin, E. Borisova, I. Fedosov, A. Namykin, A. Abdurashitov, A. Shirokov, B. Khlebtsov, Y. Lyubun, N. Navolokin et al., J. Biophotonics 11, e201700287 (2018)

    Google Scholar 

  23. S. Tétrault, O. Chever, A. Sik, F. Amzica, Eur. J. Neurosci. 28, 1330 (2008)

    Article  Google Scholar 

  24. A.J. Smith, X. Yao, J.A. Dix, B.J. Jin, A.S. Verkman, Elife 6, e27679 (2017)

    Article  Google Scholar 

  25. W.M. Pardridge, Expert Opin. Drug Deliv. 13, 963 (2016)

    Article  Google Scholar 

  26. S. Whish, K.M. Dziegielewska, K. Møllgård, N.M. Noor, S.A. Liddelow, M.D. Habgood, S.J. Richardson, N.R. Saunders, Front. Neurosci. 9, 16 (2015)

    Article  Google Scholar 

  27. R.R. Coifman, S. Lafon, A.B. Lee, M. Maggioni, B. Nadler, F. Warner, S.W. Zucker, Proc. Natl. Acad. Sci. USA 102, 7426 (2005)

    Article  Google Scholar 

  28. A.M. Bronstein, M.M. Bronstein, R. Kimmel, M. Mahmoudi, G. Sapiro, Int. J. Comput. Vis. 89, 266 (2010)

    Article  Google Scholar 

  29. B. Nadler, S. Lafon, I. Kevrekidis, R.R. Coifman, Adv. Neural Inf. Process. Syst. 18 (2006)

  30. V.S. Parekh, J.R. Jacobs, M.A. Jacobs, SPIE Proc. 9034, 90342O (2014)

    Article  Google Scholar 

  31. M.H. Aarabi, H.S. Rad, Computational Diffusion MRI (Springer, Canada, 2014), pp. 65–77

    Book  Google Scholar 

  32. E.B. Postnikov, I.M. Sokolov, Phys. A 391, 5095 (2012)

    Article  Google Scholar 

  33. J. Damon, SIAM J. Appl. Math. 59, 97 (1998)

    Article  Google Scholar 

  34. M. Haidekker, Advanced Biomedical Image Analysis (Wiley, Hoboken, 2010)

    Book  Google Scholar 

  35. W. Niblack, An Introduction to Digital Image Processing, 115–116 Prentice Hall (Englewood Cliffs, New Jersey, 1986)

    Google Scholar 

  36. J. Sauvola, M. Pietikäinen, Pattern Recognit. 33, 225 (2000)

    Article  Google Scholar 

  37. C.D. McGillem, G.R. Cooper, Continuous and Discrete Signal and System Analysis (Oxford University Press, USA, 1991)

    Google Scholar 

  38. U. Albus, Guide for the care and use of laboratory animals (8th edn) (2012)

  39. Y. Qi, T. Yu, J. Xu, P. Wan, Y. Ma, J. Zhu, Y. Li, H. Gong, Q. Luo, D. Zhu, Sci. Adv. 5, eaau8355 (2019)

    Article  Google Scholar 

  40. A.A. Namykin, N.A. Shushunova, M.V. Ulanova, O.V. Semyachkina-Glushkovskaya, V.V. Tuchin, I.V. Fedosov, J. Biophotonics 11, e201700343 (2018)

    Article  Google Scholar 

  41. O. Semyachkina-Glushkovskaya, A. Abdurashitov, A. Pavlov, A. Shirokov, N. Navolokin, O. Pavlova, A. Gekalyuk, M. Ulanova, N. Shushunova, A. Bodrova et al., Chin. Opt. Lett. 15, 090002 (2017)

    Article  Google Scholar 

  42. O. Semyachkina-Glushkovskaya, V. Chekhonin, D. Bragin, O. Bragina, E. Vodovozova, A. Alekseeva, V. Salmin, A. Morgun, N. Malinovskaya, E. Osipova et al., bioRxiv p. 509042 (2018)

  43. O.V. Semyachkina-Glushkovskaya, E.S. Esmat, D. Bragin, O. Bragina, A. Shirokov, N. Navolokin, Y. Yirong, A. Abdurashitov, A. Khorovodov, A. Terskov et al., bioRxiv (2020)

  44. H. Mestre, L.M. Hablitz, A.L.R. Xavier, W. Feng, W. Zou, T. Pu, H. Monai, G. Murlidharan, R.M.C. Rivera, M.J. Simon et al., Elife 7, e40070 (2018)

    Article  Google Scholar 

  45. E. Vendel, V. Rottschäfer, E.C. de Lange, Fluids Barriers CNS 16, 12 (2019)

    Article  Google Scholar 

  46. E. Vendel, V. Rottschäfer, E.C. de Lange, Bull. Math. Biol. 81, 3477 (2019)

    Article  Google Scholar 

  47. L. Tao, C. Nicholson, Neuroscience 75, 839 (1996)

    Article  Google Scholar 

  48. E.B. Postnikov, A. Chechkin, I.M. Sokolov, New J. Phys. 22, 063046 (2020)

    Article  Google Scholar 

  49. J. Kappler, O. Hegener, S.L. Baader, S. Franken, V. Gieselmann, H. Häberlein, U. Rauch, Matrix Biol. 28, 396 (2009)

    Article  Google Scholar 

  50. E.B. Postnikov, D.E. Postnov, An image processing method for characterizing diffusivity in Brain’s Parenchyma: a case study of significantly non-uniform structures, in International Conference on Intelligent Informatics and BioMedical Sciences (ICIIBMS 2019) (Shanghai, China, IEEE, 2019), pp. 21–22

Download references

Acknowledgements

This work is supported by the Russian Science Foundation, Project 19-15-00201.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene B. Postnikov.

Additional information

Focus Point on Breakthrough Optics- and Complex Systems-based Technologies of Modulation of Drainage and Clearing Functions of the Brain Guest editors: J. Kurths, T. Penzel, V.V. Tuchin, T. Myllylä, R.K. Wang, O. Semyachkina-Glushkovskaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Postnikov, E.B., Namykin, A.A., Semyachkina-Glushkovskaya, O.V. et al. Diffusion assessment through image processing: beyond the point-source paradigm. Eur. Phys. J. Plus 136, 480 (2021). https://doi.org/10.1140/epjp/s13360-021-01487-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01487-9

Navigation