Skip to main content
Log in

Influence of bulk mass distribution on orbital precession of S2 star in Yukawa gravity

  • Regular Article - Nonlinear Dynamics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this study we investigate possible applications of observed S2 orbit around Galactic Center for constraining the Yukawa gravity at scales in the range between several tens and several thousands astronomical units (AU) to obtain graviton mass constraints. In our model we suppose that bulk distribution of matter (includes stellar cluster, interstellar gas distribution and dark matter) exists near Supermassive Black Hole (SMBH) in our Galactic Center. We obtain the values of orbital precession angle for different values of mass density of matter, and we require that the value of orbital precession is the same like in general relativity (GR). From that request we determine gravity parameter \(\lambda \) and the upper value for graviton mass. We found that in the cases where the density of extended mass is higher, the maximum allowed value for parameter \(\lambda \) is smaller and the upper limit for graviton mass is higher. It is due to the fact that the extended mass causes the retrograde orbital precession. We believe that this study is a very efficient tool to evaluate a gravitational potential at the Galactic Center, parameter \(\lambda \) of the Yukawa gravity model, and to constrain the graviton mass.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All relevant data are in the paper.]

Notes

  1. The remarkable studies got the high recognition in scientific community and Reinhard Genzel (VLT) and Andrea Ghez (Keck) were awarded the Nobel prize in physics in 2020.

References

  1. F. Zwicky, Helv. Phys. Acta 6, 110 (1933)

    ADS  Google Scholar 

  2. M.S. Turner, in The Third Stromlo Symposium: The Galactic Halo, eds. B.K. Gibson, T.S. Axelrod, & M.E. Putman, ASP Conference Series Vol. 165, 431 (1999)

  3. A.F. Zakharov, S. Capozziello, F. De Paolis, G. Ingrosso, A.A. Nucita, Space Sci. Rev. 48, 301 (2009)

    Article  ADS  Google Scholar 

  4. S. Weinberg, Cosmology (Oxford University Press, Oxford, 2008)

    MATH  Google Scholar 

  5. M. Milgrom, Astrophys. J. 270, 365 (1983)

    Article  ADS  Google Scholar 

  6. J.D. Bekenstein, Phys. Rev. D 70, 083509 (2004)

  7. S. Capozziello, Int. J. Mod. Phys. D 11, 483 (2002)

    Article  ADS  Google Scholar 

  8. S.M. Carroll, V. Duvvuri, M. Trodden, M.S. Turner, Phys. Rev. D 70, 043528 (2004)

  9. S. Capozziello, V.F. Cardone, A. Troisi, Phys. Rev. D 73, 104019 (2006)

  10. A.F. Zakharov, A.A. Nucita, F. De Paolis, G. Ingrosso, Phys. Rev. D 74, 107101 (2006)

  11. S. Capozziello, M. de Laurentis, Phys. Rep. 509, 167 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  12. S. Capozziello, V. Faraoni, Beyond Einstein Gravity: A Survey of Gravitational Theories for Cosmology and Astrophysics (Springer, Berlin, 2011)

    Book  Google Scholar 

  13. D. Borka, P. Jovanović, V. Borka Jovanović, A.F. Zakharov, Phys. Rev. D 85, 124004 (2012)

  14. D. Borka, S. Capozziello, P. Jovanović, V. Borka Jovanović, Astropart. Phys. 79, 41 (2016)

  15. R. Genzel, T. Ott, F. Eisenhauer et al., Astrophys. J. 594, 812 (2003)

    Article  ADS  Google Scholar 

  16. A.M. Ghez, S. Salim, N.N. Weinberg et al., Astrophys. J. 689, 1044 (2008)

    Article  ADS  Google Scholar 

  17. S. Gillessen, F. Eisenhauer, T.K. Fritz et al., Astrophys. J. 707, L114 (2009)

    Article  ADS  Google Scholar 

  18. S. Gillessen, F. Eisenhauer, S. Trippe et al., Astrophys. J. 692, 1075 (2009)

    Article  ADS  Google Scholar 

  19. R. Genzel, F. Eisenhauer, S. Gillessen, Rev. Mod. Phys. 82, 3121 (2010)

    Article  ADS  Google Scholar 

  20. A. Hees, T. Do, A.M. Ghez et al., Phys. Rev. Lett. 118, 211101 (2017)

  21. C. Devin, T. Do, A. Hees et al., Astrophys. J. 854, 12 (2018)

    Article  ADS  Google Scholar 

  22. A. Hees, T. Do et al., Phys. Rev. Lett. 124, 081101 (2020)

  23. A.F. Zakharov, P. Jovanović, D. Borka, V. Borka Jovanović, J. Cosmol. Astropart. Phys. 5, 045 (2016)

  24. A.F. Zakharov, P. Jovanović, D. Borka, V. Borka Jovanović, J. Cosmol. Astropart. Phys. 04, 050 (2018)

  25. A.F. Zakharov, P. Jovanović, D. Borka, V. Borka Jovanović, J. Phys. Conf. Ser. 798, 012081 (2017)

  26. A.F. Zakharov, P. Jovanović, D. Borka, V. Borka Jovanović, Contrib. Astron. Obs. Skalnate Pleso 50, 203 (2020)

  27. D. Borka, P. Jovanović, V. Borka Jovanović, A.F. Zakharov, J. Cosmol. Astropart. Phys. 11, 050 (2013)

  28. B.P. Abbott et al., (LIGO Scientific Collaboration and Virgo Collaboration) Phys. Rev. Lett. 116, 061102 (2016)

  29. B.P. Abbott et al., Phys. Rev. Lett. 118, 221101 (2017)

  30. B.P. Abbott et al., Phys. Rev. Lett. 119, 161101 (2017)

  31. B.P. Abbott et al., Astrophys. J. Lett. 848, L13 (2017)

    Article  ADS  Google Scholar 

  32. B.P. Abbott et al., (The LIGO Scientific Collaboration and the Virgo Collaboration) Phys. Rev. D 100, 104036 (2019)

  33. The LIGO Scientific Collaboration and the Virgo Collaboration, arXiv:2010.14529v1 [gr-qc]

  34. G.F. Rubilar, A. Eckart, Astron. Astrophys. 74, 95 (2001)

    Article  ADS  Google Scholar 

  35. A.A. Nucita, F. De Paolis, G. Ingrosso et al., Publ. Astron. Soc. Pacific 119, 349 (2007)

    Article  ADS  Google Scholar 

  36. A.F. Zakharov, A.A. Nucita, F. De Paolis, G. Ingrosso, Phys. Rev. D 76, 062001 (2007)

  37. M. Preto, P. Saha, Astrophys. J. 703, 1743 (2009)

    Article  ADS  Google Scholar 

  38. A.F. Zakharov, D. Borka, V. Borka Jovanović, P. Jovanović, Adv. Sp. Res., 54, 1108 (2014)

  39. V.I. Dokuchaev, Yu. N. Eroshenko, JETP Lett. 101, 777 (2015)

  40. V.I. Dokuchaev, Yu. N. Eroshenko, Phys. Uspekhi 58, 772 (2015)

  41. A. Amorim, M. Bauböck, M. Benisty et al., Mon. Not. R. Astron. Soc. 489, 4606 (2019)

    Article  ADS  Google Scholar 

  42. S. Capozziello, E. de Filippis, V. Salzano, Mon. Not. R. Astron. Soc. 394, 947 (2009)

    Article  ADS  Google Scholar 

  43. V.F. Cardone, S. Capozziello, Mon. Not. R. Astron. Soc. 414, 1301 (2011)

    Article  ADS  Google Scholar 

  44. N.N. Weinberg, M. Milosavljević, A.M. Ghez, Astrophys. J. 622, 878 (2005)

    Article  ADS  Google Scholar 

  45. G.S. Adkins, J. McDonnell, Phys. Rev. D 75, 082001 (2007)

Download references

Acknowledgements

This work is supported by Ministry of Education, Science and Technological Development of the Republic of Serbia. P.J. wishes to acknowledge the support by this Ministry through the project contract No. 451-03-9/2021-14/200002.

Author information

Authors and Affiliations

Authors

Contributions

All coauthors participated in calculation and discussion of obtained results. The authors contributed equally to this work.

Corresponding author

Correspondence to Predrag Jovanović.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jovanović, P., Borka, D., Borka Jovanović, V. et al. Influence of bulk mass distribution on orbital precession of S2 star in Yukawa gravity. Eur. Phys. J. D 75, 145 (2021). https://doi.org/10.1140/epjd/s10053-021-00154-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00154-z

Navigation