Skip to main content
Log in

Terahertz nonlinear optics of chiral semimetals RhSn, HfSn, and PdGa

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Topological semimetals have linear band dispersion around the band crossing which is near the Fermi level. Chiral topological semimetals have no spatial inversion symmetry, and they have non-vanishing second-order optical response. The band structure and nonlinear optical conductivity (NOC) \({\sigma }_{zxy}^{(2)}(0;\omega ,-\omega )\) of the isostructural chiral semimetals RhSn, HfSn, and PdGa are studied by the first-principles calculation in this work. Our calculation demonstrates that the maximal NOC \({\sigma }_{zxy}^{(2)}(0;\omega ,-\omega )\) of chiral semimetals RhSn is about \(\sim 1370\, \upmu \hbox {A/V}^{2}\) under terahertz optical field with photon energy of \(\sim \) 12 meV, while the maximal NOCs \({\sigma }_{zxy}^{(2)}(0;\omega ,-\omega )\) of HfSn and PdGa are \(600 \, \upmu \hbox {A/V}^{2}\) and \(240\, \upmu \hbox {A/V}^{2}\), respectively. The relatively large NOC of RhSn can be interpreted by its multiple band crossing on the Fermi level, while multiple band crossings in the band structures of HfSn and PdGa are not on the Fermi level. Our calculations also reveal that the calculated imaginary part of dielectric function decreases with increasing photon energy, while the absorption coefficient increases with increasing photon energy in the terahertz region. The relatively large NOC makes chiral topological semimetal RhSn suitable for terahertz detection.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data is available upon request from the Authors.]

References

  1. J. Li, S. Ullah, R. Li, M. Liu, H. Cao, D. Li, Y. Li, X.-Q. Chen, Topological massive Dirac fermions in \(\beta \)-tungsten. Phys. Rev. B 99, 165110 (2019)

  2. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)

    Article  ADS  Google Scholar 

  3. B. Bradlyn, J. Cano, Z. Wang, M.G. Vergniory, C. Felser, R.J. Cava, B.A. Bernevig, Beyond Dirac and Weyl fermions: unconventional quasiparticles in conventional crystals. Science 353, aaf5037 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. J.-P. Sun, D. Zhang, K. Chang, Coexistence of topological nodal lines, Weyl points, and triply degenerate points in TaS. Phys. Rev. B 96, 045121 (2017)

    Article  ADS  Google Scholar 

  5. X. Yang, T.A. Cochran, R. Chapai, D. Tristant, J.-X. Yin, I. Belopolski et al., Observation of sixfold degenerate fermions in \(\text{PdSb}_{2}\). Phys. Rev. B 101 (2020)

  6. X. Zhang, Q. Gu, H. Sun, T. Luo, Y. Chen, Y. Liu, Z. Shao, Z. Zhang, S. Li et al., Eightfold fermionic excitation in a charge density wave compound. Phys. Rev. B 102, 035125 (2020)

    Article  ADS  Google Scholar 

  7. H.B. Nielsen, M. Ninomiya, Absence of neutrinos on a lattice: (I). Proof by homotopy theory. Nucl. Phys. B 185, 20–40 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  8. H.B. Nielsen, M. Ninomiya, Absence of neutrinos on a lattice: (II). Intuitive topological proof. Nucl. Phys. B 193, 173–194 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  9. D. Takane, Z. Wang, S. Souma, K. Nakayama, T. Nakayama, H. Oinuma, Y. Nakata, H. Iwasawa, C. Cacho, T. Kim, K. Horiba, H. Kumigashira, T. Takahashi, Y. Ando, T. Sato, Observation of chiral fermions with a large topological charge and associated fermi-arc surface states in cosi. Phys. Rev. Lett. 122, 076402 (2019)

    Article  ADS  Google Scholar 

  10. Z. Li, T. Iitaka, H. Zeng, H. Su, Optical response of the chiral topological semimetal RhSi. Phys. Rev. B 100, 155201 (2019)

    Article  ADS  Google Scholar 

  11. P. Tang, Q. Zhou, S.-C. Zhang, Multiple types of topological fermions in transition metal silicides. Phys. Rev. Lett. 119, 206402 (2017)

    Article  ADS  Google Scholar 

  12. D.S. Sanchez, I. Belopolski, T.A. Cochran, X. Xu, J.-X. Yin, G. Chang, W. Xie, K. Manna et al., Topological chiral crystals with helicoid-arc quantum states. Nature 567, 500–505 (2019)

    Article  ADS  Google Scholar 

  13. N.B.M. Schröter, D. Pei, M.G. Vergniory, Y. Sun, K. Manna, F. de Juan et al., Chiral topological semimetal with multifold band crossings and long Fermi arcs. Nat. Phys. 15, 759–765 (2019)

  14. S. Geller, E.A. Wood, The crystal structure of rhodium silicide. RhSi Acta Cryst. 7, 441–443 (1954)

    Article  Google Scholar 

  15. L.E. Golub, E.L. Ivchenko, B. Spival, Semiclassical theory of the circular photogalvanic effect in gyrotropic systems. Phys. Rev. B 102, 085202 (2020)

    Article  ADS  Google Scholar 

  16. E. Deyo, L. E. Golub, E. L. Ivchenko, B. Spival, Semiclassical theory of the circular photogalvanic effect in non-centrosymmetric systems, arXiv: 0904.1917

  17. J.E. Sipe, A.I. Shkrebtii, Second-order optical response in semiconductors. Phys. Rev. B 61, 5337–5352 (2000)

    Article  ADS  Google Scholar 

  18. N. Ogawa, M. Sotome, Y. Kaneko, M. Ogino, Y. Tokura, Shift current in the ferroelectric semiconductor SbSl. Phys. Rev. B 96, 241203 (2017)

    Article  ADS  Google Scholar 

  19. B. Sadhukhan, Y. Zhang, R. Ray, J. van der Brink, First-principles calculation of shift current in chalcopyrite semiconductor \(\text{ ZnSnP}_{2}\). Phys. Rev. Mater. 4, 064602 (2020)

    Article  Google Scholar 

  20. Z. Li, Y.-Q. Jin, T. Tohyama, T. Iitaka, J.-X. Zhang, H. Su, Second harmonic generation in the Weyl semimetal TaAs from a quantum kinetic equation. Phys. Rev. B 97, 085201 (2018)

    Article  ADS  Google Scholar 

  21. Z. Li, A. Tudi, P. Ren, Y. Yang, T. Iitaka, T. Tohyama, Z. Yang, S. Pan, H. Su, NaPN2: Deep-ultraviolet nonlinear optical material with unprecedented strong second-harmonic generation coefficient. Phys. Rev. Mater. 3, 025201 (2019)

    Article  Google Scholar 

  22. G.B. Osterhoudt, L.K. Diebel, M.J. Gray, X. Yang, J. Stanco, X. Huang, B. Shen, N. Ni, P.J.W. Moll, Y. Ran, K.S. Burch, Colossal mid-infrared bulk photovoltaic effect in a type-I Weyl semimetal. Nat. Mater. 18, 471–475 (2019)

    Article  ADS  Google Scholar 

  23. S.M. Young, F. Zheng, A.M. Rappe, First-principles calculation of the bulk photovoltaic effect in the bismuth ferrite. Phys. Rev. Lett. 109, 236601 (2012)

    Article  ADS  Google Scholar 

  24. L.Z. Tan, F. Zheng, S.M. Young, F. Wang, S. Liu, A.M. Rappe, Shift current bulk photovoltaic effect in polar materials-hybrid and oxide perovskites and beyond. npj Comput. Mater. 2, 16026 (2016)

    Article  ADS  Google Scholar 

  25. Y. Chen, S. Wu, A.A. Burkov, Axion response in Weyl semimetals. Phys. Rev. B 88, 125105 (2013)

    Article  ADS  Google Scholar 

  26. M.-C. Chang, M.-F. Yang, Chiral magnetic effect in a two-band lattice model of Weyl semimetal. Phys. Rev. B 91, 115203 (2015)

    Article  ADS  Google Scholar 

  27. P. Goswami, G. Sharma, S. Tewari, Optical activity as a test for dynamic chiral magnetic effect of Weyl semimetals. Phys. Rev. B 92, 161110 (2015)

    Article  ADS  Google Scholar 

  28. J. Liu, D. Vanderbilt, Weyl semimetals from noncentrosymmetric topological insulators. Phys. Rev. B 90, 155316 (2014)

    Article  ADS  Google Scholar 

  29. K. Taguchi, T. Imaeda, M. Sato, Y. Tanaka, Photovoltaic chiral magnetic effect in Weyl semimetals. Phys. Rev. B 93, 201202 (2016)

    Article  ADS  Google Scholar 

  30. I. Sodemann, L. Fu, Quantum nonlinear hall effect induced by berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015)

    Article  ADS  Google Scholar 

  31. J.-S. You, S. Fang, S.-Y. Xu, E. Kaxiras, T. Low, Berry curvature dipole current in the transition metal dichalcogenides family. Phys. Rev. B 98, 121109 (2018)

    Article  ADS  Google Scholar 

  32. S. Schmidt, D. Blaschke, G. Röpke, S.A. Smolyansky, A.V. Prozorkevich, V.D. Toneev, A quantum kinetic equation for particle production in the Schwinger mechanism. Int. J. Mod. Phys. E 7, 709–722 (1998)

    Article  ADS  Google Scholar 

  33. I. Tavernelli, On the geometrization of quantum mechanics. Ann. Phys. 371, 239–253 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. R.D. King-Smith, D. Vanderbilt, Theory of polarization of crystalline solids. Phys. Rev. B 47, 1651–1654 (1993)

    Article  ADS  Google Scholar 

  35. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003)

    Article  ADS  Google Scholar 

  36. P. Bruno, V.K. Dugaev, M. Taillefumier, Topological hall effect and berry phase in magnetic nanostructures. Phys. Rev. Lett. 93, 096806 (2004)

    Article  ADS  Google Scholar 

  37. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1997)

    Article  ADS  Google Scholar 

  38. P. Giannozzi, O. Baseggio, P. Bonfà, D. Brunato, R. Car, I. Carnimeo, C. Cavazzoni, S. de Gironcoli, P. Delugas, F. Ferrari Ruffino, A. Ferretti, N. Marzari, I. Timrov, A. Urru, S. Baroni, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Chem. Phys. 152, 154105 (2020)

    Article  Google Scholar 

  39. H. Li, S. Xu, Z.-C. Rao, L.-Q. Zhou, Z.-J. Wang, S.-M. Zhou, S.-J. Tian, S.-Y. Gao, J.-J. Li, Y.-B. Huang, H.-C. Lei, H.-M. Weng, Y.-J. Sun, T.-L. Xia, T. Qian, H. Ding, Chiral fermion reversal in chiral crystals. Nat. Common. 10, 5505 (2019)

    Article  ADS  Google Scholar 

  40. O. Schob, E. Parthé, The structure of HfSn. Acta Cryst. 17, 452–453 (1964)

    Article  Google Scholar 

  41. N.B.M. Schröter, S. Stolz, K. Manna, F. de Juan, M.G. Vergniory, J.A. Krieger, D. Pei, T. Schmitt, P. Dudin, T.K. Kim, C. Cacho, B. Bradlyn, H.T. Borrmann, M. Schmidt, R. Widmer, V.N. Strocov, C. Felser, Observation and control of maximal Chern numbers in a chiral topological semimetal. Science 369, 179–183 (2020)

    Article  ADS  Google Scholar 

  42. N. Marzari, A.A. Mostofi, J.R. Yates, I. Souza, D. Vanderbilt, Maximally localized Wannier functions: theory and applications. Rev. Mod. Phys. 84, 1419–1475 (2012)

    Article  ADS  Google Scholar 

  43. G. Pizzi, V. Vitale, R. Arita, S. Blügel, F. Freimuth, G. Géranton, M. Gibertini, D. Gresch, C. Johnson, T. Koretsune, J. Ibañez-Azpiroz, H. Lee, J.-M. Lihm, D. Marchand, A. Marrazzo, Y. Mokrousov, J.I. Mustafa, Y. Nohara, Y. Nomura, L. Paulatto, S. Poncé, T. Ponweiser, J. Qiao, F. Thöle, S.S. Tsirkin, M. Wierzbowska, D. Nicola Marzari, I. Vanderbilt, A.A. Souza, A. Mostofi, J.R. Yate, Wannier90 as a community code: new features and applications. J. Phys. Condens. Matter 32, 165902 (2020)

    Article  ADS  Google Scholar 

  44. L.Z. Maulana, K. Manna, E. Uykur, C. Felser, M. Dressel, A.V. Pronin, Optical conductivity of multifold fermions: the case of RhSi. Phys. Rev. Res. 2, 023018 (2020)

    Article  Google Scholar 

  45. A.V. Pronin, M. Dressel, Nodal semimetals: a survey on optical conductivity. Phys. Status Solidi B 258, 2000027 (2021)

    Article  ADS  Google Scholar 

  46. Z. Ni, B. Xu, M.-Á. Sánchez-Martínez, Y. Zhang, K. Manna, C. Bernhard, J.W.F. Venderbos, F. de Juan, C. Felser, A.G. Grushin, L. Wu, Linear and nonlinear optical responses in the chiral multifold semimetal RhSi. npj Quantum Mater. 5, 96 (2020)

    Article  ADS  Google Scholar 

  47. A.-Q. Wang, X.-G. Ye, D.-P. Yu, Z.-M. Liao, Topological semimetal nanostructures: from properties to topotronics. ACS Nano 14, 3755–3778 (2020)

    Article  Google Scholar 

  48. J. Liu, F. Xia, D. Xiao, F. Javier García de Abajo, D. Sun, Semimetals for high-performance photodetection. Nat. Mater. 19, 830–837 (2020)

    Article  Google Scholar 

  49. Y. Zhang, L. Fu, Terahertz Detection Based on Nonlinear Hall Effect Without Magnetic Field, arXiv:2101.05842v1

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China. T.I. is supported by MEXT via Exploratory Challenge on Post-K Computer (Frontiers of Basic Science: Challenge the Limits). The calculations were performed on the Hokusai system of Riken.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Iitaka, T. & Li, Z. Terahertz nonlinear optics of chiral semimetals RhSn, HfSn, and PdGa. Eur. Phys. J. B 94, 95 (2021). https://doi.org/10.1140/epjb/s10051-021-00093-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00093-z

Navigation