Skip to main content
Log in

Tertiary Nanocomposites of Metakaolinite/Fe3O4/SBA-15 Nanocomposite for the Heavy Metal Adsorption: Isotherm and Kinetic Study

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Magnetite nanoparticles (Fe3O4) and their kaolinite and SBA-15 (MFSBA-15) composites were fabricated and evaluated their adsorption capability of heavy-metal ions Pb(II) and Co(III) from aqueous solution. The morphology, phase structure, and composition of nanocomposites are investigated for scanning electron microscope (SEM), X-ray diffraction (XRD), VSM, TGA, and Fourier-transform infrared (FT-IR) spectroscopy. With a particle size of 100–250 nm, the material surface was heterogeneous. This study highlighted several parameters affecting the metal ion adsorption, such as initial concentrations, adsorbent dose, pH, and contact time. At optimum pH 6, 8, and 10 for Pb(II), and Co(III) ions, balance and kinetic experiments were conducted at 29 °C. The model predictions were adequately following the experimental results, and the MFSBA-15 nanocomposites were successfully used to isolate heavy metals from aqueous solutions. The maximum adsorption efficiency for MFSBA-15 material for Pb(II) and Co(III) was 248.213 and 109.254 mg/g, respectively. For regenerative studies, the composite was used. The analysis indicated that it was possible to reuse the adsorption of heavy metals from aqueous solutions over seven cycles without any adsorption capacity modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. López, F.J.; Sugita, S.; Tagaya, M.; Kobayashi, T.: Metakaolin-based geopolymers for targeted adsorbents to heavy metal ion separation. J. Mater. Sci. Chem. Eng. 2(07), 16 (2014)

    Google Scholar 

  2. "Abstracts of the 77th Annual Meeting of the Japanese Cancer Association; 2018 Sept 27–29; Osaka, Japan" as Cancer Science, Supplement 2, Vol 109 (2018). Cancer science, 2018. 109(2): p. 1–1444.

  3. Faisal, A.A., et al.: Waterworks sludge-filter sand permeable reactive barrier for removal of toxic lead ions from contaminated groundwater. J. Water Process Eng. 33, 101112 (2020)

    Google Scholar 

  4. Ali, I.; Gupta, V.K.; Aboul-Enein, H.Y.: Metal ion speciation and capillary electrophoresis: application in the new millennium. Electrophoresis 26(21), 3988–4002 (2005)

    Google Scholar 

  5. Wang, G., et al.: Removal and recovery of cobalt from Co(II)–containing water samples by dithiocarboxyl polyethyleneimine. Sep. Purif. Technol. 251, 117338 (2020)

    Google Scholar 

  6. Tchounwou, P.B., et al.: Heavy metal toxicity and the environment. Experientia Suppl. 2012(101), 133–164 (2012)

    Google Scholar 

  7. Jaishankar, M., et al.: toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 7(2), 60–72 (2014)

    Google Scholar 

  8. Vivas, E.L.; Cho, K.: Efficient adsorptive removal of Cobalt(II) ions from water by dicalcium phosphate dihydrate. J. Environ. Manage. 283, 111990 (2021)

    Google Scholar 

  9. Ali, H.; Khan, E.; Ilahi, I.: Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. J. Chem. 2019, 6730305 (2019)

    Google Scholar 

  10. Sall, M.L., et al.: Toxic heavy metals: impact on the environment and human health, and treatment with conducting organic polymers, a review. Environ. Sci. Pollut. Res. 27(24), 29927–29942 (2020)

    Google Scholar 

  11. Wuana, R.A.; Okieimen, F.E.: Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology 2011, 402647 (2011)

    Google Scholar 

  12. Xu, D., et al.: Removal of Pb (II) from aqueous solution by oxidized multiwalled carbon nanotubes. J. Hazard. Mater. 154(1–3), 407–416 (2008)

    Google Scholar 

  13. Karthikeyan, T.; Rajgopal, S.; Miranda, L.R.: Chromium (VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon. J. Hazard. Mater. 124(1–3), 192–199 (2005)

    Google Scholar 

  14. Tu, B., et al.: Efficient removal of aqueous hexavalent chromium by activated carbon derived from Bermuda grass. J. Colloid Interface Sci. 560, 649–658 (2020)

    Google Scholar 

  15. Li, Z., et al.: Interpretation of diclofenac adsorption onto ZnFe2O4/chitosan magnetic composite via BET modified model by using statistical physics formalism. J. Mol. Liquids 327, 114858 (2020)

    Google Scholar 

  16. Ali, I., et al.: Kinetics, Thermodynamics, and Modeling of Amido Black Dye Photodegradation in Water Using Co/TiO2 Nanoparticles. Photochem. Photobiol. 94(5), 935–941 (2018)

    Google Scholar 

  17. Pohl, A.: Removal of heavy metal ions from water and wastewaters by sulfur-containing precipitation agents. Water Air Soil Pollut. 231(10), 503 (2020)

    Google Scholar 

  18. Charles, J., et al.: Pollutant removal from industrial discharge water using individual and combined effects of adsorption and ion-exchange processes: Chemical abatement. J. Saudi Chem. Soc. 20(2), 185–194 (2016)

    Google Scholar 

  19. Basheer, A.A.: Chemical chiral pollution: Impact on the society and science and need of the regulations in the 21st century. Chirality 30(4), 402–406 (2018)

    Google Scholar 

  20. Jha, M.K., et al.: treatment of rayon waste effluent for the removal of Zn and Ca using Indion BSR resin. Desalination 228(1–3), 97–107 (2008)

    Google Scholar 

  21. Chauhan, M., et al.: Green synthesis of CuO nanomaterials and their proficient use for organic waste removal and antimicrobial application. Environ. Res. 168, 85–95 (2019)

    Google Scholar 

  22. Adenuga, A.A., et al.: Adsorption performance and mechanism of a low-cost biosorbent from spent seedcake of Calophyllum inophyllum in simultaneous cleanup of potentially toxic metals from industrial wastewater. J. Environ. Chem. Eng. 7(5), 103317 (2019)

    Google Scholar 

  23. Zhang, T., et al., Removal of heavy metals and dyes by clay-based adsorbents: From natural clays to 1D and 2D nanocomposites. Chemical Engineering Journal, 2020: p. 127574.

  24. Ali, I., et al.: preparation of a carboxymethylcellulose-iron composite for uptake of atorvastatin in water. Int. J. Biol. Macromol. 132, 244–253 (2019)

    Google Scholar 

  25. Ali, I., et al.: modeling of fenuron pesticide adsorption on CNTs for mechanistic insight and removal in water. Environ. Res. 170, 389–397 (2019)

    Google Scholar 

  26. Ali, I.; Aboul-Enein, H.Y.: Speciation of Metal Ions by Capillary Electrophoresis. Crit. Rev. Anal. Chem. 32(4), 337–350 (2002)

    Article  Google Scholar 

  27. Ali, I., et al.: Water treatment by new-generation graphene materials: hope for bright future. Environ. Sci. Pollut. Res. 25(8), 7315–7329 (2018)

    Google Scholar 

  28. Ali, I.; Khan, T.A.; Hussain, I.: Treatment and remediation methods for arsenic removal from the ground water. Int. J. Environ. Eng. 3(1), 48–71 (2011)

    Google Scholar 

  29. Ali, I.; Jain, C.K.: Groundwater contamination and health hazards by some of the most commonly used pesticides. Curr. Sci. 75(10), 1011–1014 (1998)

    Google Scholar 

  30. Basheer, A.A.; Ali, I.: Stereoselective uptake and degradation of (±)-o, p-DDD pesticide stereomers in water-sediment system. Chirality 30(9), 1088–1095 (2018)

    Google Scholar 

  31. Galunin, V.; Tkachev, A.G.; Kuznetsov, D.V.: See fewer authors, P.I.A.D.A.E.B.D.A.V.M.M.A.V.B.D.I.V.B.M.E.A.N.D.E., Removal of Copper(II) and Zinc(II) Ions in Water on a Newly Synthesized Polyhydroquinone/Graphene Nanocomposite Material: Kinetics, Thermodynamics and Mechanism. ChemistrySelect, 2019. 4: p. 12708–12718.

  32. Simal-Gándara, J.; Damant, A.P.; Castle, L.: The use of LC-MS in studies of migration from food contact materials: a review of present applications and future possibilities. Crit. Rev. Anal. Chem. 32(1), 47–78 (2002)

    Google Scholar 

  33. Ganzagh, M.A.A.; Yousefpour, M.; Taherian, Z.: The removal of mercury (II) from water by Ag supported on nanomesoporous silica. J. Chem. Biol. 9(4), 127–142 (2016)

    Google Scholar 

  34. Uzun, I.; Güzel, F.: Adsorption of some heavy metal ions from aqueous solution by activated carbon and comparison of percent adsorption results of activated carbon with those of some other adsorbents. Turkish J. Chem. 24(3), 291–298 (2000)

    Google Scholar 

  35. Saleh, T.A.: Isotherm, kinetic, and thermodynamic studies on Hg (II) adsorption from aqueous solution by silica-multiwall carbon nanotubes. Environ. Sci. Pollut. Res. 22(21), 16721–16731 (2015)

    Google Scholar 

  36. Rendic, S.P.; Peter Guengerich, F.: Human cytochrome P450 enzymes 5–51 as targets of drugs and natural and environmental compounds: mechanisms, induction, and inhibition–toxic effects and benefits. Drug Metab. Rev. 50(3), 256–342 (2018)

    Google Scholar 

  37. Hammi, N., et al.: chitosan as a Sustainable Precursor for Nitrogen-Containing Carbon Nanomaterials: Synthesis and Uses. Materials Today Sustainability, 2020: p. 100053.

  38. Basheer, A.A.: New generation nano-adsorbents for the removal of emerging contaminants in water. J. Mol. Liq. 261, 583–593 (2018)

    Google Scholar 

  39. Burakova, E.A., et al.: Novel and economic method of carbon nanotubes synthesis on a nickel magnesium oxide catalyst using microwave radiation. J. Mol. Liq. 253, 340–346 (2018)

    Google Scholar 

  40. Hamad Al-Shaalan, N., et al.: Application of composite nanomaterial to determine phenols in wastewater by solid phase micro membrane tip extraction and capillary electrophoresis. Mol. (Basel, Switzerland) (2019). https://doi.org/10.3390/molecules24193443

    Article  Google Scholar 

  41. Huang, Y., et al.: Magnetic phosphorylated chitosan composite as a novel adsorbent for highly effective and selective capture of lead from aqueous solution. J. Hazard. Mater. 405, 124195 (2020)

    Google Scholar 

  42. Salehi, S.; Mandegarzad, S.; Anbia, M.: Preparation and characterization of metal organic framework-derived nanoporous carbons for highly efficient removal of vanadium from aqueous solution. J. Alloy. Compd. 812, 152051 (2020)

    Google Scholar 

  43. Al-Shaalan, N.H., et al.: High performance removal and simulation studies of diuron pesticide in water on MWCNTs. J. Mol. Liq. 289, 111039 (2019)

    Google Scholar 

  44. Bremmell, K.E.; Addai-Mensah, J.: Interfacial-chemistry mediated behavior of colloidal talc dispersions. J. Colloid Interface Sci. 283(2), 385–391 (2005)

    Google Scholar 

  45. Oliveira, L.C.; Rios, R.V.; Fabris, J.D.; Sapag, K.; Garg, V.K.; Lago, R.M.: Clay–iron oxide magnetic composites for the adsorption of contaminants in water. Appl. Clay Sci. 22(4), 169–177 (2003)

    Google Scholar 

  46. You, L., et al.: Facile synthesis of Fe3O4@COF covalent organic frameworks for the adsorption of bisphenols from aqueous solution. J. Mol. Liq. 320, 114456 (2020)

    Google Scholar 

  47. Ali, I., et al.: Facile and eco-friendly synthesis of functionalized iron nanoparticles for cyanazine removal in water. Colloids Surf., B 171, 606–613 (2018)

    Google Scholar 

  48. Liu, J.; Qiao, S.Z.; Hu, Q.H.; Lu, G.Q.: Magnetic nanocomposites with mesoporous structures: synthesis and applications. Small 7(4), 425–443 (2011)

    Google Scholar 

  49. Bandar, S.; Anbia, M.; Salehi, S.: Comparison of MnO2 modified and unmodified magnetic Fe3O4 nanoparticle adsorbents and their potential to remove iron and manganese from aqueous media. J. Alloys Compd. 851, 156822 (2021)

    Google Scholar 

  50. Shahrokhi-Shahraki, R., et al.: High efficiency removal of heavy metals using tire-derived activated carbon vs commercial activated carbon: Insights into the adsorption mechanisms. Chemosphere 264, 128455 (2020)

    Google Scholar 

  51. Sung, Y.K., et al.: Magnetic nanofibers with core (Fe3O4 nanoparticle suspension) sheath (poly ethylene terephthalate) structure fabricated by coaxial electrospinning. J. Magn. Magnet Mater. 324(6), 916–922 (2012)

    Google Scholar 

  52. Arruebo, M., et al.: Sustained release of doxorubicin from zeolite–magnetite nanocomposites prepared by mechanical activation. Nanotechnology 17(16), 4057 (2006)

    Google Scholar 

  53. Takahashi, A., et al.: effect of the axial ligand on the reactivity of the oxoiron (IV) porphyrin π-cation radical complex: higher stabilization of the product state relative to the reactant state. Inorg. Chem. 51(13), 7296–7305 (2012)

    Google Scholar 

  54. Uemura, K., et al.: A Contrivance for a Dynamic Porous Framework: Cooperative Guest Adsorption Based on Square Grids Connected by Amide− Amide Hydrogen Bonds. J. Am. Chem. Soc. 126(12), 3817–3828 (2004)

    Google Scholar 

  55. Karmakar, A.; Pombeiro, A.J.: Recent advances in amide functionalized metal organic frameworks for heterogeneous catalytic applications. Coord. Chem. Rev. 395, 86–129 (2019)

    Google Scholar 

  56. Pschirer, N.G., et al.: Noninterpenetrating square-grid coordination polymers with dimensions of 25 × 25 Å2 prepared by using N, N′-type Ligands: The first chiral square-grid coordination polymer. Angew. Chem. 114(4), 603–605 (2002)

    Google Scholar 

  57. Biradha, K.; Hongo, Y.; Fujita, M.J.A.C.: Open square-grid coordination polymers of the dimensions 20 × 20 Å: remarkably stable and crystalline solids even after guest removal. Angew. Chem. 112(21), 4001–4003 (2000)

    Google Scholar 

  58. Desiraju, G.R. and T. Steiner, The weak hydrogen bond: in structural chemistry and biology. (Vol. 9). 2001: International Union of Crystal.

  59. Holman, K.T.; Pivovar, A.M.; Ward, M.D.: Engineering crystal symmetry and polar order in molecular host frameworks. Science 294(5548), 1907–1911 (2001)

    Google Scholar 

  60. Thathsara, S., et al.: A novel tri-metal composite incorporated polyacrylamide hybrid material for the removal of arsenate, chromate and fluoride from aqueous media. Environ. Technol. Innov. 14, 100353 (2019)

    Google Scholar 

  61. Zaporozhets, O., et al.: Determination of Cu (II) and Zn (II) using silica gel loaded with 1-(2-thiasolylazo)-2-naphthol. Talanta 49(4), 899–906 (1999)

    Google Scholar 

  62. Soliman, E.M.; Mahmoud, M.E.; Ahmed, S.A.: Synthesis, characterization and structure effects on selectivity properties of silica gel covalently bonded diethylenetriamine mono-and bis-salicyaldehyde and naphthaldehyde Schiff, s bases towards some heavy metal ions. Talanta 54(2), 243–253 (2001)

    Google Scholar 

  63. Abou-El-Sherbini, K.S., et al.: Separation and preconcentration in a batch mode of Cd (II), Cr (III, VI), Cu (II), Mn (II, VII) and Pb (II) by solid-phase extraction by using of silica modified with N-propylsalicylaldimine. Talanta 58(2), 289–300 (2002)

    Google Scholar 

  64. Gao, X., et al.: Adsorption of heavy metal ions by sodium alginate based adsorbent-a review and new perspectives. International Journal of Biological Macromolecules, 2020.

  65. Naik, B., et al.: Synthesis of Ag nanoparticles within the pores of SBA-15: an efficient catalyst for reduction of 4-nitrophenol. 2011. 12(12): p. 1104–1108.

  66. Pradhan, N., et al.: Silver nanoparticle catalyzed reduction of aromatic nitro compounds. Colloids Surf. A: Physicochem. Eng. Aspects 196(2–3), 247–257 (2002)

    Google Scholar 

  67. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G.H.; Chmelka, B.F.; Stucky, G.D.: Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279(5350), 548–552 (1998)

    Google Scholar 

  68. Khodakov, A.Y., et al.: Impact of aqueous impregnation on the long-range ordering and mesoporous structure of cobalt containing MCM-41 and SBA-15 materials. Microporous Mesoporous Mater. 79(1–3), 29–39 (2005)

    Google Scholar 

  69. Jamshaid, A., et al.: Cellulose-based materials for the removal of heavy metals from wastewater–an overview. Chem. Bio. Eng. Rev 4(4), 240–256 (2017)

    Google Scholar 

  70. Kumar, P.S., et al.: kinetics and equilibrium studies of Pb2+ in removal from aqueous solutions by use of nano-silversol-coated activated carbon. Braz. J. Chem. Eng. 27(2), 339–346 (2010)

    Google Scholar 

  71. Naushad, M.: Surfactant assisted nanocomposite cation exchanger: development, characterization and applications for the removal of toxic Pb2+ from aqueous medium. Chem. Eng. J. 235, 100–108 (2014)

    Google Scholar 

  72. Pereira, P.M., et al.: Synthesis of Zeolite A from Metakaolin and Its Application in the Adsorption of Cationic Dyes. Appl. Sci. 8(4), 608 (2018)

    Google Scholar 

  73. Hua, J.Q., et al.: Energy-saving preparation of a bioflocculant under high-salt condition by using strain Bacillus sp and the interaction mechanism towards heavy metals. Chemosphere 267, 129324 (2021)

    Google Scholar 

  74. Naseem, K., et al.: Adsorptive removal of heavy metal ions using polystyrene-poly(N-isopropylmethacrylamide-acrylic acid) core/shell gel particles: Adsorption isotherms and kinetic study. J. Mol. Liq. 277, 522–531 (2019)

    Google Scholar 

  75. Lazaar, K., et al.: metakaolin and demolition wastes in eco-based sand consolidated concrete. 2020.

  76. Diffo, B.K., et al.: effect of the rate of calcination of kaolin on the properties of metakaolin-based geopolymers. J. Asian Ceramic Soc 3(1), 130–138 (2015)

    Google Scholar 

  77. Kanakaraju, D.; Abdullah, M.A.B.; Chin, L.Y.: TiO2/PKSAC functionalized with Fe3O4 for efficient concurrent removal of heavy metal ions from water. Colloid Interface Sci. Commun. 40, 100353 (2021)

    Google Scholar 

  78. Chen, M., et al.: Efficient elimination behavior and mechanism of heavy metal by eco-friendly potassium titanium trisilicate. J. Environ. Chem. Eng. 9(1), 104823 (2021)

    Google Scholar 

  79. Adrover, M.E., et al.: synthesis and characterization of mesoporous SBA-15 and SBA-16 as carriers to improve albendazole dissolution rate. Saudi Pharm. J. 28(1), 15–24 (2020)

    Google Scholar 

  80. Dou, W.; Liu, J.; Li, M.: Competitive adsorption of Cu2+ in Cu2+, Co2+ and Ni2+ mixed multi–metal solution onto graphene oxide (GO)–based hybrid membranes. J. Mol. Liq. 322, 114516 (2021)

    Google Scholar 

  81. Es-sahbany, H., et al.: Adsorption of heavy metal (Cadmium) in synthetic wastewater by the natural clay as a potential adsorbent (Tangier-Tetouan-Al Hoceima–Morocco region). Materials Today: Proceedings, 2021.

  82. Tan, L., et al.: Multifunctional nanocomposite Fe 3 O 4@ SiO 2–mPD/SP for selective removal of Pb (ii) and Cr (vi) from aqueous solutions. RSC Adv. 4(86), 45920–45929 (2014)

    Google Scholar 

  83. Fathy, M.; Selim, H.; Shahawy, A.E.: Chitosan/MCM-48 nanocomposite as a potential adsorbent for removing phenol from aqueous solution. RSC Adv. 10(39), 23417–23430 (2020)

    Google Scholar 

  84. Palanivel, R. and Velraj, G.: FTIR and FT-Raman spectroscopic studies of fired clay artifacts recently excavated in Tamilnadu, India. 2007.

  85. Parker, R.W.; Frost, R.L.: The application of drift spectroscopy to the multicomponent analysis of organic chemicals adsorbed on montmorillonite. Clays Clay Miner. 44(1), 32–40 (1996)

    Google Scholar 

  86. Frost, R.L.; Vassallo, A.M.: The dehydroxylation of the kaolinite clay minerals using infrared emission spectroscopy. Clays Clay Miner 44(5), 635–651 (1996)

    Google Scholar 

  87. Rios, C.A.; Williams, C.D.; Fullen, M.A.: Nucleation and growth history of zeolite LTA synthesized from kaolinite by two different methods. Appl. Clay Sci. 42(3–4), 446–454 (2009)

    Google Scholar 

  88. Ma, M., et al.: preparation and characterization of magnetite nanoparticles coated by amino silane. Colloids Surf. A: Physicochem. Eng. Aspects 212(2–3), 219–226 (2003)

    Google Scholar 

  89. Giraldo, L.; Moreno-Piraján, J.C.: Study on the adsorption of heavy metal ions from aqueous solution on modified SBA-15. Mater. Res. 16(4), 745–754 (2013)

    Google Scholar 

  90. Mureseanu, M., et al.: Modified SBA-15 mesoporous silica for heavy metal ions remediation. Chemosphere 73(9), 1499–1504 (2008)

    Google Scholar 

  91. Hosny, R.; Fathy, M.; Abdelraheem, O.H.; Zayed, M.A.: Utilization of cross-linked chitosan/ACTF biocomposite for softening hard water: optimization by adsorption modeling. Egypt. J. Chem. 62, 437–456 (2019)

    Google Scholar 

  92. Baby, T.T.; Ramaprabhu, S.: SiO2 coated Fe3O4 magnetic nanoparticle dispersed multiwalled carbon nanotubes based amperometric glucose biosensor. Talanta 80(5), 2016–2022 (2010)

    Google Scholar 

  93. Galarneau, A., et al.: True microporosity and surface area of mesoporous SBA-15 silicas as a function of synthesis temperature. Langmuir 17(26), 8328–8335 (2001)

    Google Scholar 

  94. Lazaar, K. et al.: Metakaolin and demolition wastes in eco-based sand consolidated concrete. Boletín de la Sociedad Española de Cerámica y Vidrio, 2020.

  95. Esrafili, L., et al.: Reuse of Predesigned Dual-Functional Metal Organic Frameworks (DF-MOFs) after heavy metal removal. J. Hazard. Mater. 403, 123696 (2021)

    Google Scholar 

  96. Ivanets, A., et al.: A comparative study on the synthesis of magnesium ferrite for the adsorption of metal ions: Insights into the essential role of crystallite size and surface hydroxyl groups. Chem. Eng. J. 411, 128523 (2021)

    Google Scholar 

  97. Cheng, T., et al.: The heavy metal adsorption characteristics on metakaolin-based geopolymer. Appl. Clay Sci. 56, 90–96 (2012)

    Google Scholar 

  98. Fathy, M.; Zayed, M.A.; Moustafa, Y.: Synthesis and applications of CaCO3/HPC core–shell composite subject to heavy metals adsorption processes. Heliyon 5(8), e02215 (2019)

    Google Scholar 

  99. Mitra, S., et al.: First principles study of Ag absorption mechanism in amorphous large silica clusters. Phys. E. 112, 26–35 (2019)

    Google Scholar 

  100. Freundlich, H.: Über die adsorption in lösungen. Z. Phys. Chem. 57(1), 385–470 (1907)

    Google Scholar 

  101. Treybal, R.E.: Mass transfer operations. 1980. 466.

  102. Lima, E.C., et al.: Is one performing the treatment data of adsorption kinetics correctly? J. Environ. Chem. Eng. 9(2), 104813 (2021)

    Google Scholar 

  103. Yuh-Shan, H.: Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics 59(1), 171–177 (2004)

    Google Scholar 

  104. Ho, Y.S.: Review of second-order models for adsorption systems. J. Hazard. Mater. 136(3), 681–689 (2006)

    Google Scholar 

  105. Lasheen, M.R., et al.: adsorption of heavy metals from aqueous solution by magnetite nanoparticles and magnetite-kaolinite nanocomposite: equilibrium, isotherm and kinetic study. Desalination Water Treat. 57(37), 17421–17429 (2016)

    Google Scholar 

  106. Kalantari, K., et al.: Rapid adsorption of heavy metals by Fe3O4/talc nanocomposite and optimization study using response surface methodology. Int. J. Mol. Sci. 15(7), 12913–12927 (2014)

    Google Scholar 

Download references

Acknowledgement

Taif University Researchers Supporting Project number (TURSP-2020/45) Taif University, Taif, SaudiArabia

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. El-Denglawey or Mahmoud F. Mubarak.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Denglawey, A., Mubarak, M.F. & Selim, H. Tertiary Nanocomposites of Metakaolinite/Fe3O4/SBA-15 Nanocomposite for the Heavy Metal Adsorption: Isotherm and Kinetic Study. Arab J Sci Eng 47, 455–476 (2022). https://doi.org/10.1007/s13369-021-05690-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05690-9

Keywords

Navigation