Skip to main content
Log in

Numerical Simulation on the Interaction Modes Between Hydraulic and Natural Fractures Based on a New SPH Method

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In order to study the interaction mechanisms between hydraulic fractures (HF) and natural fractures (NF), a new numerical method named 2P-IKSPH has been proposed. The interactions between HF and NF under different conditions are simulated, results show that under the condition of low vertical confining pressure and low injecting rate, NF initiates at one tip closer to the horizontal boundary; under the condition of high vertical confining pressure, high injecting rate and small inclination angle of NF, the branching phenomenon occurs. The confining pressure, inclination angle and injecting rate all have significant impacts on the characteristic loads (e.g., HF initiation pressure, approaching pressure and NF initiation pressure). The research results can provide some references for the understanding of interaction mechanisms between HF and NF; meanwhile, developing high performance 3D 2P-IKSPH program will be the future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Jiang, Y.; Lian, H.; Nguyen, V.P.; et al.: Propagation behavior of hydraulic fracture across the coal-rock interface under different interfacial friction coefficients and a new prediction model. J. Nat. Gas Sci. Eng. 68, 102894 (2019)

    Article  Google Scholar 

  2. Chen, Z.; Yang, Z.; Wang, M.: Hydro-mechanical coupled mechanisms of hydraulic fracture propagation in rocks with cemented natural fractures. J. Pet. Sci. Eng. 163, 421–434 (2018)

    Article  Google Scholar 

  3. Dontsov, E.V.: Propagation regimes of buoyancy-driven hydraulic fractures with solidification. J. Fluid Mech. 797, 1–28 (2016)

    Article  MathSciNet  Google Scholar 

  4. Cappa, F.; Guglielmi, Y.; Merrien Soukatchoff, V.; et al.: Evaluation of coupled hydromechanical analysis of a fractured rock mass by the multi-scale comparison between experimental and numerical modeling datas from the coaraze natural site. Langmuir 19(17), 6987–6993 (2014)

    Google Scholar 

  5. Clark, J.B.: A hydraulic process for increasing the productivity of wells. J. Pet. Technol. 1(1), 1–8 (1949)

    Article  Google Scholar 

  6. Wang, Q.; Chen, X.; Jha, A.N.; Rogers, H.: Natural gas from shale formation e the evolution, evidences and challenges of shale gas revolution in United States. Renew. Sustain. Energy Rev. 30, 1–28 (2014)

    Article  Google Scholar 

  7. Less, C.; Andersen, N.: Hydrofracture: state of the art in South Africa. Appl. Hydrogeol. 2(2), 59–63 (1994)

    Article  Google Scholar 

  8. Aitssi, L.; Villeneuve, J.; Rouleau, A.: Utilization of a stochastic model of fractured rock for the study of the hydraulic properties of a fissured mass. Can. Geotech. J. 26 (1989)

  9. Zheng, Y.; Liu, J.; Lei, Y.: The propagation behavior of hydraulic fracture in rock mass with cemented joints. Geofluids 5406870 (2019)

  10. Taleghani, A.D.; Gonzalez, M.; Shojaei, A.: Overview of numerical models for interactions between hydraulic fractures and natural fractures: challenges and limitations. Comput. Geotech. 71(1), 361–368 (2016)

    Article  Google Scholar 

  11. Zhou, J.; Chen, M.; Jin, Y.: Study on shear failure mechanism of natural fracture in fracturing. J. Rock Mech. Eng. 2008(S1), 2637–2641 (2008)

    Google Scholar 

  12. Blanton, T.L.: Propagation of hydraulically and dynamically induced fractures in naturally fractured reservoirs. In: SPE Unconventional Gas Technology Symposium [S.L.]: Society of Petroleum Engineers (1986)

  13. Zhang, S.; Guo, T.; Zhou, T.: Mechanism of fracture expansion in natural shale fracturing. J. Pet. 35(03), 496-503+518 (2014)

    Google Scholar 

  14. Li, Y.; Xu, W.; Zhao, J.: Criteria for determining hydraulic fractures passing through natural fractures in shale reservoirs. Gas Ind. 35(07), 49–54 (2015)

    Google Scholar 

  15. Liu, Y.; Ai, C.: Study on the law of natural fracture opening multistage fracturing induced stress. Oil Drill. Technol. 43(01), 20–26 (2015)

    Google Scholar 

  16. Li, Y.; Wang, Y.; Zhao, J.: Calculation model of fracturing angle of shale reservoir considering multiple seam stress interference. Nat. Gas Geosci. 26(10), 1979-1983+1998 (2015)

    Google Scholar 

  17. Tang, C.; Li, L.; Li, C.: Analysis of geotechnical engineering stability RFPA strength reduction. J. Rock Mech. Eng. 2006(08), 1522–1530 (2006)

    Google Scholar 

  18. Branco, R.; Antunes, F.V.; Costa, J.D.: A review on 3D-FE adaptive remeshing techniques for crack growth modelling. Eng. Fract. Mech. 141, 170–195 (2015)

    Article  Google Scholar 

  19. Zhang, L.: Systematic investigation of the planar shape of rock fractures using PFC3D numerical experiments. Can. J. Cardiol. 28(6), 750–757 (2012)

    Article  Google Scholar 

  20. Ohnishi, Y.; Sasaki, T.; Koyama, T.; et al.: Recent insights into analytical precision and modelling of DDA and NMM for practical problems. Geomech. Geoeng. 9(2), 97–112 (2014)

    Article  Google Scholar 

  21. Zhou, X.P.; Shou, Y.D.; Qian, Q.H.: Three-dimensional nonlinear dynamic strength criterion for rock. Int. J. Geomech. 16(2), 04015041 (2016)

    Article  Google Scholar 

  22. Müller, A.; Vargas, E.A.: Stability analysis of a slope under impact of a rock block using the generalized interpolation material point method (GIMP). Landslides 16, 751–764 (2019)

    Article  Google Scholar 

  23. Vonneumann, J.; Richtmyer, R.D.: A Method for the numerical calculation of hydrodynamic shocks. J. Appl. Phys. 21(3), 232–237 (1950)

    Article  MathSciNet  Google Scholar 

  24. Liu, G.R.; Liu, M.B.: Smoothed particle hydrodynamics: a mesh-free particle method. World Scientific Press (2003)

    Book  Google Scholar 

  25. Libersky, L.D.; Petschek, A.G.; Carney, T.C.; et al.: High strain Lagrangian hydrodynamics: a three-dimensional SPH code for dynamic material response. J. Comput. Phys. 109(1), 67–75 (1993)

    Article  Google Scholar 

  26. Janiszewski, M.; Shen, B.; Rinne, M.: Simulation of the interactions between hydraulic and natural fractures using a fracture mechanics approach. J. Rock Mech. Geotech. Eng. 11(6), 1138–1150 (2019)

    Article  Google Scholar 

  27. Rahimi-Aghdam, S.; Chau, V.T.; Lee, H.; et al.: Branching of hydraulic cracks enabling permeability of gas or oil shale with closed natural fractures. Proc. Natl. Acad. Sci. 116, 1532–1537 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial supports of the National Natural Science Fund (Grant No. U1765204), the National Natural Science Found (51409170) and “the Fundamental Research Funds for the Central Universities”. Meanwhile, the authors greatly wish to express their thanks to Professor Bi Jing, Wuwen Yao, and Yongchuan Yu for their technical supports in the IKSPH programing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren Xuhua.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shuyang, Y., Xuhua, R., Haijun, W. et al. Numerical Simulation on the Interaction Modes Between Hydraulic and Natural Fractures Based on a New SPH Method. Arab J Sci Eng 46, 11089–11100 (2021). https://doi.org/10.1007/s13369-021-05672-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05672-x

Keywords

Navigation