Skip to main content

Advertisement

Log in

Study of energy density of adsorption-based thermal energy storage system under different operating conditions for SAPO-34

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The water vapor and the silico-alumino-phosphate (SAPO-34) material has been recognized to be one of the better adsorbate-adsorbent pairs for the packed-bed adsorptive thermal energy storage (TES) systems for space heating applications. In this paper, operating conditions including the system construction materials selection, cooling methods of the system after regeneration, relative humidity (RH) of inlet air, and packed-bed regeneration temperatures have been examined for the TES system performance evaluation and process design optimization purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AC:

Air cooling

AHT:

Adsorptive heat transformation

BET:

Brunauer–Emmett–Teller

IC:

Isolated cooling

MFC:

Mass flow controller

MOF:

Metal organic framework

PC:

Polycarbonate

RH:

Relative humidity

SAPO:

Silico-alumino-phosphate

SLPM:

Standard liter per minute

SS:

Stainless steel

TES:

Thermal energy storage

Cg inlet :

Inlet water vapor concentration (mol/m3)

Cp :

Heat capacity of the moist air (kJ/kg·K)

P atm :

Atmosphere pressure (101.325 kPa)

P inlet :

Total pressure measured (kPa) at column inlet hygrometer

P sat :

Saturated water vapor pressure (kPa) at temperature THinlet

q :

Adsorption capacity (mol/kg)

R :

Gas constant (8.3145 J/mol·K)

RH inlet :

Inlet relative humidity measured (%) at inlet hygrometer

ΔT:

Temperature difference (K) between the column inlet and outlet

TH inlet :

Temperature measured (K) at column inlet hygrometer

V :

Volume of the packed bed column (cm3)

v m :

Mass flow rate (kg/s) of the moist air

References

  1. Xu, J., Wang, R.Z., Li, Y.: A review of available technologies for seasonal thermal energy storage. Sol. Energy 103, 610–638 (2014)

    Article  CAS  Google Scholar 

  2. Guney, M.S., Tepe, Y.: Classification and assessment of energy storage systems. Renew. Sustain. Energy Rev. 75, 1187–1197 (2017)

    Article  Google Scholar 

  3. Hauer, A.: Evaluation of adsorbent materials for heat pump and thermal energy storage applications in open systems. Adsorption 13(3–4), 399–405 (2007)

    Article  CAS  Google Scholar 

  4. European Commission: Executive summary: mapping and analyses of the current and future (2020–2030) heating/cooling fuel deployment (fossil/renewables) (2016)

  5. Natural Resources Canada: Energy efficiency trends in Canada - 1990 to 2013. Ottawa, ON (2016)

  6. Santori, G., Di Santis, C.: Optimal fluids for adsorptive cooling and heating. Sustain. Mater. Technol. 12, 52–61 (2017)

    CAS  Google Scholar 

  7. Aristov, Y.: Concept of adsorbent optimal for adsorptive cooling/heating. Appl. Therm. Eng. 72(2), 166–175 (2014)

    Article  Google Scholar 

  8. Henninger, S.K., et al.: New materials for adsorption heat transformation and storage. Renew. Energy 110, 59–68 (2017)

    Article  CAS  Google Scholar 

  9. Storch, G., Reichenauer, G., Scheffler, F., Hauer, A.: Hydrothermal stability of pelletized zeolite 13X for energy storage applications. Adsorption 14(2–3), 275–281 (2008)

    Article  CAS  Google Scholar 

  10. Srivastava, N.C., Eames, I.W.: A review of adsorbents and adsorbates in solid-vapour adsorption heat pump systems. Appl. Therm. Eng. 18(9–10), 707–714 (1998)

    Article  CAS  Google Scholar 

  11. Sircar, S.: Basic research needs for design of adsorptive gas separation processes. Ind. Eng. Chem. Res. 45(16), 5435–5448 (2006)

    Article  CAS  Google Scholar 

  12. Bardy, D.A., Cruickshank, C.A., Tezel, F.H., Carrier, Y.H., Wong, B.: An experimental investigation of fixed and fluidized beds as adsorbers in compact thermal energy storage systems. J. Energy Storage 31, 101648 (2020)

    Article  Google Scholar 

  13. Buczek, B., Klimowska, E., Vogt, E.: Preparation of active carbons for adsorption cooling system. Adsorption 11(1), 769–773 (2005)

    Article  Google Scholar 

  14. Miksik, F., Miyazaki, T.: Material selection and properties for adsorption heat storage: perspectivity of TMPS series mesoporous silica nano-materials. Adsorption 25(6), 1137–1145 (2019)

    Article  CAS  Google Scholar 

  15. Hua, Y., Godin, A., Tezel, F.H.: Water vapor adsorption in silica gel for thermal energy storage application. Adv. Mater. Lett. 10(2), 124–127 (2019)

    Article  CAS  Google Scholar 

  16. Dicaire, D., Tezel, F.H.: Regeneration and efficiency characterization of hybrid adsorbent for thermal energy storage of excess and solar heat. Renew. Energy 36(3), 986–992 (2011)

    Article  CAS  Google Scholar 

  17. Hua, Y., Ugur, B., Tezel, F.H.: Adsorbent screening for thermal energy storage application. Sol. Energy Mater. Sol. Cells 196, 119–123 (2019)

    Article  CAS  Google Scholar 

  18. Lefebvre, D., Amyot, P., Ugur, B., Tezel, F.H.: Adsorption prediction and modeling of thermal energy storage systems: a parametric study. Ind. Eng. Chem. Res. 55(16), 4760–4772 (2016)

    Article  CAS  Google Scholar 

  19. Tatsidjodoung, P., Le Pierrès, N., Luo, L.: A review of potential materials for thermal energy storage in building applications. Renew. Sustain. Energy Rev. 18, 327–349 (2013)

    Article  Google Scholar 

  20. Aristov, Y.I.: Challenging offers of material science for adsorption heat transformation: a review. Appl. Therm. Eng. 50(2), 1610–1618 (2013)

    Article  CAS  Google Scholar 

  21. Jänchen, J., Stach, H.: Adsorption properties of porous materials for solar thermal energy storage and heat pump applications. Energy Procedia 30, 289–293 (2012)

    Article  Google Scholar 

  22. Dicaire, D., Tezel, F.H.: Use of adsorbents for thermal energy storage of solar or excess heat: improvement of energy density. Int. J. Energy Res. 37(9), 1059–1068 (2013)

    Article  CAS  Google Scholar 

  23. Lefebvre, D., Tezel, F.H.: A review of energy storage technologies with a focus on adsorption thermal energy storage processes for heating applications. Renew. Sustain. Energy Rev. 67, 116–125 (2017)

    Article  CAS  Google Scholar 

  24. Calabrese, L., Bonaccorsi, L., Bruzzaniti, P., Proverbio, E., Freni, A.: SAPO-34 based zeolite coatings for adsorption heat pumps. Energy 187, 115981 (2019)

    Article  CAS  Google Scholar 

  25. Calabrese, L., Bonaccorsi, L., Bruzzaniti, P., Frazzica, A., Freni, A., Proverbio, E.: Adsorption performance and thermodynamic analysis of SAPO-34 silicone composite foams for adsorption heat pump applications. Mater. Renew. Sustain. Energy 7(4), 1–13 (2018)

    Article  Google Scholar 

  26. Ammann, J., Michel, B., Ruch, P.W.: Characterization of transport limitations in SAPO-34 adsorbent coatings for adsorption heat pumps. Int. J. Heat Mass Transf. 129, 18–27 (2019)

    Article  CAS  Google Scholar 

  27. Zheng, X., Wang, R.Z., Ge, T.S., Hu, L.M.: Performance study of SAPO-34 and FAPO-34 desiccants for desiccant coated heat exchanger systems. Energy 93, 88–94 (2015)

    Article  CAS  Google Scholar 

  28. van Heyden, H., Munz, G., Schnabel, L., Schmidt, F., Mintova, S., Bein, T.: Kinetics of water adsorption in microporous aluminophosphate layers for regenerative heat exchangers. Appl. Therm. Eng. 29(8–9), 1514–1522 (2009)

    Article  Google Scholar 

  29. Freni, A., Bonaccorsi, L., Calabrese, L., Caprì, A., Frazzica, A., Sapienza, A.: SAPO-34 coated adsorbent heat exchanger for adsorption chillers. Appl. Therm. Eng. 82, 1–7 (2015)

    Article  CAS  Google Scholar 

  30. Jhung, S.H., Chang, J.S., Hwang, J.S., Park, S.E.: Selective formation of SAPO-5 and SAPO-34 molecular sieves with microwave irradiation and hydrothermal heating. Microporous Mesoporous Mater. 64(1–3), 33–39 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support received for this project from Natural Sciences and Engineering Research Council of Canada (NSERC) through Canada-wide NSERC Energy Storage Technology (NEST) Network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Handan Tezel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrier, Y., Strong, C., Lefebvre, D. et al. Study of energy density of adsorption-based thermal energy storage system under different operating conditions for SAPO-34. Adsorption 27, 629–636 (2021). https://doi.org/10.1007/s10450-021-00319-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-021-00319-7

Keywords

Navigation