Skip to main content
Log in

Theoretical analyses and numerical simulation of flexural vibration based on Reddy and modified higher-order plate theories for a transversely isotropic circular plate

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper is concerned with free vibration analyses of a circular transversely isotropic elastic plate based on Reddy plate theory and modified higher-order shear deformation plate theory (MHSDT). Hamilton’s principle is used to derive the equations of motion and boundary conditions of the circular plate. Natural frequencies are determined from the solution of the governing equations and boundary conditions along the circular edge. Comparisons of natural frequencies and mode shapes arising from the Mindlin plate theory, the Reddy plate theory, MHSDT, and finite element method are made for fully free and clamped circular plates. The comparison results show that MHSDT has better accuracy than the other analytical plate theories in terms of the natural frequencies and corresponding mode shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chladni, E.F.F.: Entdeckungen über die Theorie des Klanges (1787)

  2. Timoshenko, S., Woinowsky-Krieger, S.: Theory of Plates and Shells, 2nd edn. McGraw-Hill Book Company, New York (1959)

    MATH  Google Scholar 

  3. Mindlin, R.D.: Influence of rotary inertia and shear on flexural motions of isotropic elastic plates. ASME J. Appl. Mech. 18, 31–38 (1951)

    Article  Google Scholar 

  4. Voigt, W.: Bemerkungen zu dem Problem der transversalen Schwingungen Rechteckiger Platten, Nachrichten von der Königl. Gesellschaft der Wissenschaften und der Georg-August-Universität zu Göttingen, pp. 225–230 (1893).

  5. Carrington, H.: The frequencies of vibration of flat circular plates fixed at the circumference. Lond. Edinb. Dublin Philos. Mag. J. Sci. 50(300), 1261–1264 (1925)

    Article  Google Scholar 

  6. Leissa, A.W.: The free vibration of rectangular plates. J. Sound Vib. 31(3), 257–293 (1973)

    Article  Google Scholar 

  7. Gorman, D.J.: Free vibration analysis of the completely free rectangular plate by the method of superposition. J. Sound Vib. 57(3), 437–447 (1978)

    Article  Google Scholar 

  8. Reissner, E.: The effect of transverse shear deformation on the bending of elastic plates. ASME J. Appl. Mech. 12, 69–77 (1945)

    Article  MathSciNet  Google Scholar 

  9. Hencky, H.: Über die Berücksichtigung der Schubverzerrung in ebenen Platten. Ingenieur-Archiv 16(1), 72–76 (1947)

    Article  MathSciNet  Google Scholar 

  10. Ambartsumyan, S.A.: Theory of Anisotropic Plates: Strength, Stability, Vibration. Technomic Publishing Company, Stanford (1970)

    Google Scholar 

  11. Gorman, D.J.: Accurate free vibration analysis of clamped Mindlin plates using the method of superposition. J. Sound Vib. 198, 341–353 (1996)

    Article  Google Scholar 

  12. Gorman, D.J., Ding, W.: Accurate free vibration analysis of the completely free rectangular Mindlin plate. J. Sound Vib. 189(3), 341–353 (1996)

    Article  Google Scholar 

  13. Hashemi, S.H., Arsanjani, M.: Exact characteristic equations for some of classical boundary conditions of vibrating moderately thick rectangular plates. Int. J. Solids Struct. 42(3), 819–853 (2005)

    Article  Google Scholar 

  14. Wu, Y.C., Ma, C.C., Liou, H.C.: Theoretical analysis and experimental measurement of coupling dynamic characteristics for transversely isotropic rectangular plate based on modified FSDT assumption. Acta Mech. 231, 4275–4321 (2020)

  15. Liew, K.M., Xiang, Y., Kitipornchai, S., Wang, C.M.: Vibration of Mindlin Plates: Programming the P-Version Ritz Method, 1st edn. Elsevier, Amsterdam (1998)

    MATH  Google Scholar 

  16. Nanni, J.: Das Eulersche Knickproblem unter Berücksichtigung der Querkräfte. ZAMP 22, 156–185 (1971)

    MATH  Google Scholar 

  17. Reddy, J.N.: A simple higher-order theory for laminated composite plates. ASME J. Appl. Mech. 51(4), 745–752 (1984)

    Article  Google Scholar 

  18. Reddy, J.N., Phan, N.D.: Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory. J. Sound Vib. 98(2), 157–170 (1985)

    Article  Google Scholar 

  19. Hosseini-Hashemi, S., Fadaee, M., Taher, H.R.D.: Exact solutions for free flexural vibration of Lévy-type rectangular thick plates via third-order shear deformation plate theory. Appl. Math. Model. 35(2), 708–727 (2011)

    Article  MathSciNet  Google Scholar 

  20. Vinyas, M., et al.: Numerical analysis of the vibration response of skew magneto-electro-elastic plates based on the higher-order shear deformation theory. Compos. Struct 214, 132–142 (2019)

    Article  Google Scholar 

  21. Touratier, M.: An efficient standard plate theory. Int. J. Eng. Sci. 29(8), 901–916 (1991)

    Article  Google Scholar 

  22. Soldatos, K.P.: A transverse shear deformation theory for homogeneous monoclinic plates. Acta Mech. 94(3–4), 195–220 (1992)

    Article  MathSciNet  Google Scholar 

  23. Karama, M., Afaq, K.S., Mistou, S.: Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity. Int. J. Solids Struct. 40(6), 1525–1546 (2003)

    Article  Google Scholar 

  24. Thai, H.T., Kim, S.E.: A simple higher-order shear deformation theory for bending and free vibration analysis of functionally graded plates. Compos. Struct 96, 165–173 (2013)

    Article  Google Scholar 

  25. Thai, H.T., Vo, T.P.: A new sinusoidal shear deformation theory for bending, buckling, and vibration of functionally graded plates. Appl. Math. Model. 37(5), 3269–3281 (2013)

    Article  MathSciNet  Google Scholar 

  26. Hanna, N.F., Leissa, A.W.: A higher order shear deformation theory for the vibration of thick plates. J. Sound Vib. 170(4), 545–555 (1994)

    Article  Google Scholar 

  27. Leissa, A.W., Zhang, Z.D.: On the three-dimensional vibrations of the cantilevered rectangular parallelepiped. J. Acoust. Soc. Am. 73(6), 2013–2021 (1983)

    Article  Google Scholar 

  28. McGee, O.G., Leissa, A.W.: Three-dimensional free vibrations of thick skewed cantilevered plates. J. Sound Vib. 144(2), 305–322 (1991)

    Article  Google Scholar 

  29. Srinivas, S., Rao, C.V.J., Rao, A.K.: An exact analysis for vibration of simply-supported homogeneous and laminated thick rectangular plates. J. Sound Vib. 12(2), 187–199 (1970)

    Article  Google Scholar 

  30. Wittrick, W.H.: Analytical three-dimensional elasticity solutions to some plate problems and some observations on Mindlin’s plate theory. Int. J. Solids Struct. 23(4), 441–464 (1987)

    Article  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the financial supports of this research by the Ministry of Science and Technology (Republic of China) under Grant MOST 107-2221-E-002 -086 -MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien-Ching Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Case 1, clamped boundary condition:

$$ S_{1i}^{R} = \hat{w}_{in} (\alpha_{i} ){\kern 1pt} \quad {\text{for}}\;i = {1},{2},{3}\quad {\text{and}}\quad S_{14}^{R} = 0, $$
(49)
$$ S_{2i}^{R} = \partial \hat{w}_{in} (\alpha_{i} )/\partial \xi \quad {\text{for}}\;i = { 1},{2},{3}\quad {\text{and}}\quad S_{24}^{R} = 0, $$
(50)
$$ S_{3i}^{R} = \chi_{i} \partial \hat{w}_{in} (\alpha_{i} )/\partial \xi \quad {\text{for}}\;i = {1},{2},{3}\quad {\text{and}}\quad S_{34}^{R} = n\hat{w}_{4n} (\alpha_{4} ), $$
(51)
$$ S_{4i}^{R} = \chi_{i} n\hat{w}_{in} (\alpha_{i} )\quad {\text{for}}\;i = {1},{2},{3}\quad {\text{and}}\quad S_{44}^{R} = \partial \hat{w}_{4n} (\alpha_{4} )/\partial \xi. $$
(52)

Case 2, free boundary condition:

$$ \begin{aligned} S_{1i}^{R} &= \left( {\chi_{i} - \frac{5}{16}} \right)\left( {\frac{{\partial^{3} \hat{w}_{in} (\alpha_{i} )}}{{\partial \xi^{3} }} + \frac{{\partial^{2} \hat{w}_{in} (\alpha_{i} )}}{{\partial \xi^{2} }}} \right)\\ &\quad+ \left\{ {\left( {\frac{5}{16} - \chi_{i} } \right)\left[ {\left( {1 - \gamma_{12} } \right)n^{2} + \left( {1 + n^{2} } \right) - \lambda^{4} } \right]} \right.\\ &\quad + \left.\frac{21}{2}\frac{{\gamma_{55} }}{{\eta^{2} }}\left( {\chi_{i} + 1} \right) \right\}\frac{{\partial \hat{w}_{in} (\alpha_{i} )}}{\partial \xi }\\ &\quad+ \left( {3 - \gamma_{12} } \right)\left( {\chi_{i} - \frac{5}{16}} \right)n^{2} \hat{w}_{in} (\alpha_{i} )\end{aligned}\quad {\text{for}}\;i = 1,2,3, $$
(53)
$$ S_{14}^{R} = \left( { - n^{3} \left( {1 - \gamma_{12} } \right) + \lambda^{4} n + \frac{21}{2}\frac{{\gamma_{55} n}}{{\eta^{2} }}} \right)\hat{w}_{4n} (\alpha_{4} ) + \left( {1 - \gamma_{12} } \right)n\frac{{\partial \hat{w}_{4n} (\alpha_{4} )}}{\partial \xi }, $$
(54)
$$ S_{2i}^{R} = \left( {\chi_{i} - \frac{5}{16}} \right)\left( {\frac{{\partial^{2} \hat{w}_{in} (\alpha_{i} )}}{{\partial \xi^{2} }} + \gamma_{12} \frac{{\partial \hat{w}_{in} (\alpha_{i} )}}{\partial \xi } - \gamma_{12} n^{2} \hat{w}_{in} (\alpha_{i} )} \right)\quad {\text{for}}\;i = {1},{2},{3}, $$
(55)
$$ S_{24}^{R} = \left( {1 - \gamma_{12} } \right)n\left( {\frac{{\partial \hat{w}_{4n} (\alpha_{4} )}}{\partial \xi } - \hat{w}_{4n} (\alpha_{4} )} \right), $$
(56)
$$ S_{3i}^{R} = \left( {\chi_{i} - \frac{1}{4}} \right)\left( {\frac{{\partial^{2} \hat{w}_{in} (\alpha_{i} )}}{{\partial \xi^{2} }} + \gamma_{12} \frac{{\partial \hat{w}_{in} (\alpha_{i} )}}{\partial \xi } - \gamma_{12} n^{2} \hat{w}_{in} (\alpha_{i} )} \right)\quad {\text{for}}\;i = {1},{2},{3}, $$
(57)
$$ S_{34}^{R} = \left( {1 - \gamma_{12} } \right)n\left( {\frac{{\partial \hat{w}_{4n} (\alpha_{4} )}}{\partial \xi } - \hat{w}_{4n} (\alpha_{4} )} \right), $$
(58)
$$ S_{4i}^{R} = n\left( {\frac{17}{4}\chi_{i} - 1} \right)\left( { - \frac{{\partial \hat{w}_{in} (\alpha_{i} )}}{\partial \xi } + \hat{w}_{in} (\alpha_{i} )} \right)\quad {\text{for}}\;i = {1},{2},{3}, $$
(59)
$$ S_{44}^{R} = \frac{17}{8}\left( { - n^{2} \hat{w}_{4n} (\alpha_{4} ) + \frac{{\partial \hat{w}_{4n} (\alpha_{4} )}}{\partial \xi } - \frac{{\partial^{2} \hat{w}_{4n} (\alpha_{4} )}}{{\partial^{2} \xi }}} \right). $$
(60)

Appendix B

Case 1, clamped boundary condition:

$$ S_{1i}^{L} = \hat{w}_{in} (\alpha_{i} )\quad {\text{for}}\;i = {1},{2},{3},{4}\quad {\text{and}}\quad S_{15}^{L} = 0, $$
(61)
$$ S_{2i}^{L} = \chi_{i} \hat{w}_{in} (\alpha_{i} )\quad {\text{for}}\;i = { 1},{2},{3},{4}\quad {\text{and}}\quad S_{25}^{L} = 0, $$
(62)
$$ S_{3i}^{L} = \left( {1 + \eta^{2} \chi_{i} } \right)\partial \hat{w}_{in} (\alpha_{i} )/\partial \xi \quad {\text{for}}\;i = {1},{2},{3},{4}\quad {\text{and}}\quad S_{35}^{L} = 0, $$
(63)
$$ S_{4i}^{L} = \lambda_{i} \partial \hat{w}_{in} (\alpha_{i} )/\partial \xi \quad {\text{for}}\;i = { 1},{2},{3},{4}\quad {\text{and}}\quad S_{45}^{L} = n\hat{w}_{5n} (\alpha_{5} ), $$
(64)
$$ S_{5i}^{L} = \lambda_{i} n\hat{w}_{in} {\kern 1pt} {\kern 1pt} (\alpha_{i} ){\text{for}}\;i = {1},{2},{3},{4}\quad {\text{and}}\quad S_{55}^{L} = \partial \hat{w}_{5n} (\alpha_{5} )/\partial {\xi} .$$
(65)

Case 2, free boundary condition:

$$ S_{1i}^{L} = \left( {\lambda_{i} + 1} \right)\partial \hat{w}_{in} (\alpha_{i} )/\partial \xi \quad {\text{for}}\;i = {1},{2},{3},{4}\quad {\text{and}}\quad S_{15}^{L} = \hat{w}_{5n} (\alpha_{5} ), $$
(66)
$$ \begin{aligned} S_{2i}^{L} &= \left[ {\lambda_{i} - \frac{5}{16}\left( {1 + \eta^{2} \chi_{i} } \right)} \right]\left( {\frac{{\partial^{3} \hat{w}_{in} (\alpha_{i} )}}{{\partial \xi^{3} }} + \frac{{\partial^{2} \hat{w}_{in} (\alpha_{i} )}}{{\partial \xi^{2} }}} \right)\\ &\quad + \left\{ \left[ {\frac{5}{16}\left( {1 + \eta^{2} \chi_{i} } \right) - \lambda_{i} } \right]\left[ {\left( {n^{2} + 1} \right) + \left( {1 - \gamma_{12} } \right)n^{2} - \lambda^{4} } \right] \right. \\ &\quad +\left. \frac{21}{8}\gamma_{13} \chi \right\}\frac{{\partial \hat{w}_{in} (\alpha_{i} )}}{\partial \xi }\\ &\quad + \left( {3 - \gamma_{12} } \right)\left[ {\lambda_{i} - \frac{5}{16}\left( {1 + \eta^{2} \chi_{i} } \right)} \right]n^{2} \hat{w}_{in} (\alpha_{i} )\\ \end{aligned}\quad {\text{for}}\;i = 1,2,3,4, $$
(67)
$$ S_{25}^{L} = \left( { - n^{3} \left( {1 - \gamma_{12} } \right) + \lambda^{4} n} \right)\hat{w}_{5n} (\alpha_{5} ) + \left( {1 - \gamma_{12} } \right)n\frac{{\partial \hat{w}_{5n} (\alpha_{5} )}}{\partial \xi }, $$
(68)
$$\begin{aligned} S_{3i}^{L} &= \left( {\lambda_{i} - \frac{5}{16} - \frac{5}{16}\eta^{2} \chi_{i} } \right)\left( {\frac{{\partial^{2} \hat{w}_{in} (\alpha_{i} )}}{{\partial \xi^{2} }} + \gamma_{12} \frac{{\partial \hat{w}_{in} (\alpha_{i} )}}{\partial \xi } - \gamma_{12} n^{2} \hat{w}_{in} (\alpha_{i} )} \right)\\ &\quad + \frac{7}{8}\gamma_{13} \chi_{i} \hat{w}_{in} (\alpha_{i} )\\ \end{aligned}\quad {\text{for}}\;i = 1,2,3,4, $$
(69)
$$ S_{35}^{L} = \left( {1 - \gamma_{12} } \right)n\left( {\frac{{\partial \hat{w}_{5n} (\alpha_{5} )}}{\partial \xi } - \hat{w}_{5n} (\alpha_{5} )} \right), $$
(70)
$$ \begin{aligned} S_{4i}^{L} &= \left( {\frac{17}{4}\lambda_{i} - 1 - \eta^{2} \chi_{i} } \right)\left( {\frac{{\partial^{2} \hat{w}_{in} (\alpha_{i} )}}{{\partial \xi^{2} }} + \gamma_{12} \frac{{\partial \hat{w}_{in} (\alpha_{i} )}}{\partial \xi } - \gamma_{12} n^{2} \hat{w}_{in} (\alpha_{i} )} \right)\\ &\quad+ \frac{21}{2}\gamma_{13} \chi_{i} \hat{w}_{in} (\alpha_{i} )\\ \end{aligned}\quad {\text{for}}\;i = 1,2,3,4, $$
(71)
$$ S_{45}^{L} = \frac{17}{4}\left( {1 - \gamma_{12} } \right)n\left( {\frac{{\partial \hat{w}_{5n} (\alpha_{5} )}}{\partial \xi } - \hat{w}_{5n} (\alpha_{5} )} \right), $$
(72)
$$ S_{5i}^{L} = n\left( {\frac{17}{4}\lambda_{i} - 1 - \eta^{2} \chi_{i} } \right)\left( { - \frac{{\partial \hat{w}_{in} (\alpha_{i} )}}{\partial \xi } + \hat{w}_{in} (\alpha_{i} )} \right)\quad {\text{for}}\;i = {1},{2},{3},{4}, $$
(73)
$$ S_{55}^{L} = \frac{17}{8}\left( { - n^{2} \hat{w}_{5n} (\alpha_{5} ) + \frac{{\partial \hat{w}_{5n} (\alpha_{5} )}}{\partial \xi } - \frac{{\partial^{2} \hat{w}_{5n} (\alpha_{5} )}}{{\partial^{2} \xi }}} \right). $$
(74)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, M., Wu, YC. & Ma, CC. Theoretical analyses and numerical simulation of flexural vibration based on Reddy and modified higher-order plate theories for a transversely isotropic circular plate. Acta Mech 232, 2825–2842 (2021). https://doi.org/10.1007/s00707-021-02973-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-02973-y

Navigation