Skip to main content
Log in

ORCA: Outlier detection and Robust Clustering for Attributed graphs

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

A framework is proposed to simultaneously cluster objects and detect anomalies in attributed graph data. Our objective function along with the carefully constructed constraints promotes interpretability of both the clustering and anomaly detection components, as well as scalability of our method. In addition, we developed an algorithm called Outlier detection and Robust Clustering for Attributed graphs (ORCA) within this framework. ORCA is fast and convergent under mild conditions, produces high quality clustering results, and discovers anomalies that can be mapped back naturally to the features of the input data. The efficacy and efficiency of ORCA is demonstrated on real world datasets against multiple state-of-the-art techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. http://www.patentsview.org.

  2. https://github.com/smallk/.

  3. https://aminer.org/

  4. https://www.cs.cmu.edu/~enron/

  5. Our code and datasets are publicly available at https://gitlab.com/seswar3/orca.

References

  1. Aggarwal, C.C.: Outlier analysis. In: Data Mining, pp. 237–263. Springer (2015). https://doi.org/10.1007/978-3-319-14142-8_8

  2. Aggarwal, C.C.: An introduction to outlier analysis. In: Outlier Analysis, pp. 1–34. Springer (2017). https://doi.org/10.1007/978-3-319-47578-3_1

  3. Akoglu, L., McGlohon, M., Faloutsos, C.: Oddball: spotting anomalies in weighted graphs. In: Advances in Knowledge Discovery and Data Mining, pp. 410–421 (2010). https://doi.org/10.1007/978-3-642-13672-6_40

  4. Akoglu, L., Tong, H., Koutra, D.: Graph based anomaly detection and description: a survey. Data Min. Knowl. Discov. 29(3), 626–688 (2015). https://doi.org/10.1007/s10618-014-0365-y

    Article  MathSciNet  Google Scholar 

  5. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont (1999)

    MATH  Google Scholar 

  6. Bouwmans, T., Sobral, A., Javed, S., Jung, S.K., Zahzah, E.H.: Decomposition into low-rank plus additive matrices for background/foreground separation: a review for a comparative evaluation with a large-scale dataset. Comput. Sci. Rev. 23, 1–71 (2017). https://doi.org/10.1016/j.cosrev.2016.11.001

    Article  MATH  Google Scholar 

  7. Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM (JACM) 58(3), 11 (2011). https://doi.org/10.1145/1970392.1970395

    Article  MathSciNet  MATH  Google Scholar 

  8. Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9(6), 717 (2009). https://doi.org/10.1007/s10208-009-9045-5

    Article  MathSciNet  MATH  Google Scholar 

  9. Chakrabarti, D., Faloutsos, C.: Graph mining: laws, generators, and algorithms. ACM Comput. Surv. (CSUR) 38(1), 2-es (2006). https://doi.org/10.1145/1132952.1132954

    Article  Google Scholar 

  10. Davis, J., Goadrich, M.: The relationship between precision-recall and roc curves. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 233–240. ACM (2006). https://doi.org/10.1145/1143844.1143874

  11. Dhillon, I.S., Guan, Y., Kulis, B.: Kernel k-means: spectral clustering and normalized cuts. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 551–556. ACM (2004). https://doi.org/10.1145/1014052.1014118

  12. Drineas, P., Frieze, A., Kannan, R., Vempala, S., Vinay, V.: Clustering large graphs via the singular value decomposition. Mach. Learn. 56(1), 9–33 (2004). https://doi.org/10.1023/B:MACH.0000033113.59016.96

    Article  MATH  Google Scholar 

  13. Du, R., Drake, B., Park, H.: Hybrid clustering based on content and connection structure using joint nonnegative matrix factorization. J. Glob. Optim. 74, 861–877 (2017). https://doi.org/10.1007/s10898-017-0578-x

    Article  MathSciNet  MATH  Google Scholar 

  14. Du, R., Kuang, D., Drake, B., Park, H.: Hierarchical community detection via rank-2 symmetric nonnegative matrix factorization. Computat. Soc. Netw. 4(1), 7 (2017). https://doi.org/10.1186/s40649-017-0043-5

    Article  Google Scholar 

  15. Dunlavy, D.M., Kolda, T.G., Acar, E.: Temporal link prediction using matrix and tensor factorizations. ACM Trans. Knowl. Discov. Data (TKDD) 5(2), 1–27 (2011). https://doi.org/10.1145/1921632.1921636

    Article  Google Scholar 

  16. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010). https://doi.org/10.1016/j.physrep.2009.11.002

    Article  MathSciNet  Google Scholar 

  17. Gao, H., Chen, Y., Lee, K., Palsetia, D., Choudhary, A.N.: Towards online spam filtering in social networks. NDSS 12, 1–16 (2012). https://doi.org/10.1109/ICDM.2011.124

    Article  Google Scholar 

  18. Gao, J., Liang, F., Fan, W., Wang, C., Sun, Y., Han, J.: On community outliers and their efficient detection in information networks. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 813–822. ACM (2010). https://doi.org/10.1145/1835804.1835907

  19. Henderson, K., Gallagher, B., Li, L., Akoglu, L., Eliassi-Rad, T., Tong, H., Faloutsos, C.: It’s who you know: graph mining using recursive structural features. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 663–671. ACM (2011). https://doi.org/10.1145/2020408.2020512

  20. Huber, P.J.: Robust Statistics, vol. 523. Wiley, Hoboken (2004). https://doi.org/10.1002/9780470434697

    Book  Google Scholar 

  21. Kannan, R., Ballard, G., Park, H.: Mpi-faun: an mpi-based framework for alternating-updating nonnegative matrix factorization. IEEE Trans. Knowl. Data Eng. 30(3), 544–558 (2018). https://doi.org/10.1109/TKDE.2017.2767592

    Article  Google Scholar 

  22. Kannan, R., Woo, H., Aggarwal, C.C., Park, H.: Outlier detection for text data. In: Proceedings of the 2017 SIAM International Conference on Data Mining, pp. 489–497. SIAM (2017). https://doi.org/10.1137/1.9781611974973.55

  23. Kim, J., He, Y., Park, H.: Algorithms for nonnegative matrix and tensor factorizations: a unified view based on block coordinate descent framework. J. Glob. Optim. 58(2), 285–319 (2014). https://doi.org/10.1007/s10898-013-0035-4

    Article  MathSciNet  MATH  Google Scholar 

  24. Kim, J., Park, H.: Fast nonnegative matrix factorization: an active-set-like method and comparisons. SIAM J. Sci. Comput. 33(6), 3261–3281 (2011). https://doi.org/10.1137/110821172

    Article  MathSciNet  MATH  Google Scholar 

  25. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM (JACM) 46(5), 604–632 (1999). https://doi.org/10.1145/324133.324140

    Article  MathSciNet  MATH  Google Scholar 

  26. Kuang, D., Yun, S., Park, H.: Symnmf: nonnegative low-rank approximation of a similarity matrix for graph clustering. J. Glob. Optim. 62(3), 545–574 (2015). https://doi.org/10.1007/s10898-014-0247-2

    Article  MathSciNet  MATH  Google Scholar 

  27. Kumar, S., Hooi, B., Makhija, D., Kumar, M., Faloutsos, C., Subrahmanian, V.: Rev2: fraudulent user prediction in rating platforms. In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, pp. 333–341. ACM (2018). https://doi.org/10.1145/3159652.3159729

  28. Lee, D.D., Seung, H.S.: (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791. https://doi.org/10.1038/44565

  29. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Advances in Neural Information Processing Systems, pp. 556–562 (2001). https://doi.org/10.5555/3008751.3008829

  30. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Statistical properties of community structure in large social and information networks. In: Proceedings of the 17th International Conference on World Wide Web, pp. 695–704. ACM (2008). https://doi.org/10.1145/1367497.1367591

  31. Leskovec, J., Lang, K.J., Mahoney, M.: Empirical comparison of algorithms for network community detection. In: Proceedings of the 19th International Conference on World Wide Web, pp. 631–640. ACM (2010). https://doi.org/10.1145/1772690.1772755

  32. Li, J., Dani, H., Hu, X., Liu, H.: Radar: Residual analysis for anomaly detection in attributed networks. In: IJCAI, pp. 2152–2158 (2017). https://doi.org/10.24963/ijcai.2017/299

  33. Liu, N., Huang, X., Hu, X.: Accelerated local anomaly detection via resolving attributed networks. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence (2017). https://doi.org/10.24963/ijcai.2017/325

  34. Lu, Q., Getoor, L.: Link-based classification. In: Proceedings of the 20th International Conference on Machine Learning (ICML-03), pp. 496–503 (2003). https://doi.org/10.5555/3041838.3041901

  35. Mahoney, M.W., Drineas, P.: Cur matrix decompositions for improved data analysis. Proc. Natl. Acad. Sci. 106(3), 697–702 (2009). https://doi.org/10.1073/pnas.0803205106

    Article  MathSciNet  MATH  Google Scholar 

  36. McCallum, A.K., Nigam, K., Rennie, J., Seymore, K.: Automating the construction of internet portals with machine learning. Inf. Retrieval 3(2), 127–163 (2000). https://doi.org/10.1023/A:1009953814988

    Article  Google Scholar 

  37. Muller, E., Sánchez, P.I., Mulle, Y., Bohm, K.: Ranking outlier nodes in subspaces of attributed graphs. In: 2013 IEEE 29th International Conference on Data Engineering Workshops (ICDEW), pp. 216–222. IEEE (2013). https://doi.org/10.1109/ICDEW.2013.6547453

  38. Peng, Z., Luo, M., Li, J., Liu, H., Zheng, Q.: Anomalous: a joint modeling approach for anomaly detection on attributed networks. In: IJCAI, pp. 3513–3519 (2018). https://doi.org/10.5555/3304222.3304256

  39. Pfeiffer III, J.J., Moreno, S., La Fond, T., Neville, J., Gallagher, B.: Attributed graph models: modeling network structure with correlated attributes. In: Proceedings of the 23rd International Conference on World Wide Web, pp. 831–842. ACM (2014). https://doi.org/10.1145/2566486.2567993

  40. Revelle, M., Domeniconi, C., Sweeney, M., Johri, A.: Finding community topics and membership in graphs. In: Machine Learning and Knowledge Discovery in Databases. Lecture Notes in Computer Science, vol. 9285, pp. 625–640. Springer (2015). https://doi.org/10.1007/978-3-319-23525-7_38

  41. She, Y., Owen, A.B.: Outlier detection using nonconvex penalized regression. J. Am. Stat. Assoc. 106(494), 626–639 (2011). https://doi.org/10.1198/jasa.2011.tm10390

    Article  MathSciNet  MATH  Google Scholar 

  42. Tong, H., Lin, C.Y.: Non-negative residual matrix factorization with application to graph anomaly detection. In: Proceedings of the 2011 SIAM International Conference on Data Mining, pp. 143–153. SIAM (2011). https://doi.org/10.1137/1.9781611972818.13

  43. Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007). https://doi.org/10.1007/s11222-007-9033-z

    Article  MathSciNet  Google Scholar 

  44. Wang, G., Xie, S., Liu, B., Philip, S.Y.: Review graph based online store review spammer detection. In: 2011 IEEE 11th International Conference on Data Mining (ICDM), pp. 1242–1247. IEEE (2011)

  45. Whang, J.J., Du, R., Jung, S., Lee, G., Drake, B., Liu, Q., Kang, S., Park, H.: Mega: multi-view semi-supervised clustering of hypergraphs. Proc. VLDB Endowment 13(5), 698–711 (2020). https://doi.org/10.14778/3377369.3377378

    Article  Google Scholar 

  46. Wright, J., Ganesh, A., Rao, S., Peng, Y., Ma, Y.: Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization. In: Advances in Neural Information Processing Systems, pp. 2080–2088 (2009). https://doi.org/10.5555/2984093.2984326

  47. Xu, H., Caramanis, C., Sanghavi, S.: Robust PCA via outlier pursuit. In: Advances in Neural Information Processing Systems, pp. 2496–2504 (2010). https://doi.org/10.5555/2997046.2997174

  48. Yu, R., He, X., Liu, Y.: Glad: group anomaly detection in social media analysis. ACM Trans. Knowl. Discov. Data (TKDD) 10(2), 18 (2015). https://doi.org/10.1145/2811268

    Article  Google Scholar 

Download references

Acknowledgements

This material is based in part upon work supported by the U.S. National Science Foundation (NSF) under Grant Nos. OAC-1642410, CCF-1533768, and OAC-1710371. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of NSF or DOE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivas Eswar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eswar, S., Kannan, R., Vuduc, R. et al. ORCA: Outlier detection and Robust Clustering for Attributed graphs. J Glob Optim 81, 967–989 (2021). https://doi.org/10.1007/s10898-021-01024-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-021-01024-z

Keywords

Navigation