Skip to main content
Log in

The assessment of two different pollutants dispersion from a coal-fired power plant for various thermal regimes

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, numerical simulations of the movement and emissions dispersion of two pollutants (sulfur dioxide(SO2) and carbon dioxide(CO2)) into the atmospheric boundary layer were considered under natural atmospheric conditions. To test the numerical algorithm and to select the optimal turbulent model, the test problem was solved numerically. The obtained computational data were compared with measurement data and values from the computation of other authors and the SST k-omega model illustrated the closest values to the data from the experiment, this is achieved by modifying the boundary condition for turbulent kinetic energy. The tested computational algorithm was used to characterize the emissions process of two pollutants from two chimneys of the Ekibastuz SDPP and the distribution of CO2 and SO2 in the air flow field in natural air condition. For this task, four various velocity variations were considered, as well as several various thermal variations (temperature inversion, constant temperature and decreasing temperature by the height). From the obtained computational results, it should be noticed that different environmental temperature conditions extremely impact the distribution of pollutants CO2 and SO2 in the atmospheric surface layer, so at constant temperature conditions, the species for all velocity variations have nearly identical species profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Acharya S, Tyagi M, Hoda A. Flow and heat transfer predictions for film-cooling. Ann N Y Acad Sci. 2001;934:110–25.

    CAS  Google Scholar 

  2. Ajersch P, Zhou JM, Ketler S, Salcudean M, Gartshore IS. Multiple jets in a cross flow: detailed measurements and numerical simulations, international gas turbine and Aeroengine congress and exposition, ASME paper 95-GT-9. TX: Houston; June 1995. p. 1–16.

  3. Alinot C, Masson C. K-ϵ model for the atmospheric boundary layer under various thermal stratifications. J Sol Energy Eng. 2005;127(4):438–43.

    Google Scholar 

  4. Amer, A. A., Jubran, B. A., and Hamdan, M. A., “Comparison of different two-equation turbulence models for prediction of film cooling from two rows of holes,” Numerical Heat Transfer, Pt A, Vol. 21, 1992, pp. 143–162.

  5. Anderson HR, Atkinson RW, Bremner SA, Carrington J, Peacock J. Quantitative systematic review of short term associations between ambient air pollution (particulate matter, ozone, nitrogen dioxide, Sulphur dioxide and carbon monoxide), and mortality and morbidity: Division of Community Health Sciences St George's - University of London; 2007. (121 pp)

  6. Berkowicz R. OSPM — a parameterised street pollution model. Urban Air Quality: Measurement, Modelling and Management; 2000. p. 323–31.

  7. Brunekreef B. Health effects of air pollution observed in cohort studies in Europe. J Expo Sci Environ Epidemiol. 2007;17(S2):S61–5.

    CAS  Google Scholar 

  8. Buseck PR, Posfai M. Airborne minerals and related aerosol particles: effects on climate and the environment. Proc Natl Acad Sci. 1999;96(7):3372–9.

    CAS  Google Scholar 

  9. Cai S, Ma Q, Wang S, Zhao B, Brauer M, Cohen A, et al. Impact of air pollution control policies on future PM2.5 concentrations and their source contributions in China. J Environ Manag. 2018;227:124–33. https://doi.org/10.1016/j.jenvman.2018.08.052.

    Article  Google Scholar 

  10. Carreras-Sospedra M, Dabdub D, Brouwer J, Knipping E, Kumar N, Darrow K, et al. Air quality impacts of distributed energy resources implemented in the northeastern United States. J Air Waste Manage Assoc. 2008;58:902–12.

    CAS  Google Scholar 

  11. Chai X, Iyer PS, Mahesh K. Numerical study of high speed jets in crossflow. J Fluid Mech. 2015;785:152–88.

    Google Scholar 

  12. Chen L, Yang L, Du X, Yang Y. Flue gas diffusion for integrated dry-cooling tower and stack system in power plants. Int J Therm Sci. 2017;114:257–70. https://doi.org/10.1016/j.ijthermalsci.2017.01.004.

    Article  Google Scholar 

  13. Chmielewski Y, Sun Z, Zimek S, Bułka J. Licki, mechanism of NOx removal by electron beam process in the presence of scavengers. Radiat Phys Chem. 2002;65:397–403.

    CAS  Google Scholar 

  14. Davidson CI, Phalen RF, Solomon PA. Airborne particulate matter and human health: a review. Aerosol Sci Technol. 2005;39(8):737–49.

    CAS  Google Scholar 

  15. Dockery DW, Stone PH. Cardiovascular risks from fine particulate air pollution. N Engl J Med. 2007;356(5):511–3.

    CAS  Google Scholar 

  16. Fard RF, Naddafi K, Yunesian M, Nodehi RN, Dehghani MH, Hassanvand MS. The assessment of health impacts and external costs of natural gas-fired power plant of Qom. Environ Sci Pollut Res. 2016;23(20):20922–36.

    Google Scholar 

  17. Fuzzi S, Baltensperger U, Carslaw K, Decesari S, Denier van der Gon H, Facchini MC, et al. Particulate matter, air quality and climate: lessons learned and future needs. Atmos Chem Phys. 2015;15(14):8217–99.

    CAS  Google Scholar 

  18. Gauderman WJ, Urman R, Avol E, Berhane K, McConnell R, Rappaport E, et al. Association of improved air quality with lung development in children. N Engl J Med. 2015;372(10):905–13.

    CAS  Google Scholar 

  19. Ghermandi G, Fabbi S, Arvani B, et al. Impact assessment of pollutant emissions in the atmosphere from a power plant over a complex terrain and under unsteady winds. Sustainability. 2017;9:2076.

    Google Scholar 

  20. Hassan, I., Findlay, M., Salcudean, M., and Gartshore, I., Prediction of film cooling with compound-angle injection using different turbulence models, 6th Annual Conf. of the Computational Fluid Dynamics Society of Canada, Quebec, QC, Canada, June 1998, pp. 1–6.

  21. He S, Tang S, Xiao Y, Cheke RA. Stochastic Modelling of air pollution impacts on respiratory infection risk. Bull Math Biol. 2018;80:3127–53. https://doi.org/10.1007/s11538-018-0512-5.

    Article  Google Scholar 

  22. Hoek G, Krishnan RM, Beelen R, Peters A, Ostro B, Brunekreef B, et al. Long-term air pollution exposure and cardio- respiratory mortality: a review. Environ Health. 2013;12(1):43–57.

    CAS  Google Scholar 

  23. Horne JR, Carreras-Sospedra M, Dabdub D, Lemar P, Nopmongcol U, Shah T, et al. Air quality impacts of projections of natural gas-fired distributed generation. Atmos Environ. 2017;168:8–22.

    CAS  Google Scholar 

  24. Issakhov A. Modeling of synthetic turbulence generation in boundary layer by using zonal RANS/LES method. Int J Nonlin Sci Num Simul. 2014;15(2):115–20. https://doi.org/10.1515/ijnsns-2012-0029.

    Article  Google Scholar 

  25. Issakhov A. Mathematical modeling of the discharged heat water effect on the aquatic environment from thermal power plant under various operational capacities. Appl Math Model. 2016;40(2):1082–96.

    Google Scholar 

  26. Issakhov A. Numerical study of the discharged heat water effect on the aquatic environment from thermal power plant by using two water discharged pipes. Int J Nonlin Sci Num Simul. 2017;18(6):469–83.

    Google Scholar 

  27. Issakhov A, Borsikbayeva A. The impact of a multilevel protection column on the propagation of a water wave and pressure distribution during a dam break: numerical simulation. J Hydrol. 2021;598:126212. https://doi.org/10.1016/j.jhydrol.2021.126212.

    Article  Google Scholar 

  28. Issakhov A, Mashenkova A. Numerical study for the assessment of pollutant dispersion from a thermal power plant under the different temperature regimes. Int J Environ Sci Technol. 2019;16(10):6089–112. https://doi.org/10.1007/s13762-019-02211-y.

    Article  CAS  Google Scholar 

  29. Issakhov A, Omarova P. Numerical simulation of pollutant dispersion in the residential areas with continuous grass barriers. Int J Environ Sci Technol. 2020;17:525–40. https://doi.org/10.1007/s13762-019-02517-x.

    Article  Google Scholar 

  30. Issakhov A, Omarova P. Modeling and analysis of the effects of barrier height on automobiles emission dispersion. J Clean Prod. 2021;296:126450. https://doi.org/10.1016/j.jclepro.2021.126450.

    Article  CAS  Google Scholar 

  31. Issakhov A, Bulgakov R, Zhandaulet Y. Numerical simulation of the dynamics of particle motion with different sizes. Eng Appl Comput Fluid Mech. 2019;13(1):1–25.

    Google Scholar 

  32. Issakhov A, Alimbek A, Issakhov A. A numerical study for the assessment of air pollutant dispersion with chemical reactions from a thermal power plant. Eng Appl Comput Fluid Mech. 2020a;14:1035–61. https://doi.org/10.1080/19942060.2020.1800515.

    Article  Google Scholar 

  33. Issakhov A, Omarova P, Issakhov A. Numerical study of thermal influence to pollutant dispersion in the idealized urban street road. Air Qual Atmos Health. 2020b;13:1045–56. https://doi.org/10.1007/s11869-020-00856-0.

    Article  CAS  Google Scholar 

  34. Issakhov A, Alimbek A, Zhandaulet Y. The assessment of water pollution by chemical reaction products from the activities of industrial facilities: numerical study. J Clean Prod. 2021;282:125239. https://doi.org/10.1016/j.jclepro.2020.125239.

    Article  CAS  Google Scholar 

  35. Ito K, Christensen WF, Eatough DJ, Henry RC, Kim E, Laden F, et al. PM source apportionment and health effects: 2. An investigation of intermethod variability in associations between source-apportioned fine particle mass and daily mortality in Washington, DC. J Expo Sci Environ Epidemiol. 2006;16(4):300–10.

    CAS  Google Scholar 

  36. Jerrett M. The death toll from air-pollution sources. Nature. 2015;525(7569):330–1.

    CAS  Google Scholar 

  37. Keimasi MR, Taeibi-Rahni M. Numerical simulation of jets in a crossflow using different turbulence models. AIAA J. December 2001;39(12).

  38. Kim SW, Benson TJ. Fluid flow of a row of jets in Crossflow - a numerical study. AIAA J. 1993;31(5):806–11.

    CAS  Google Scholar 

  39. Kozic MS. A numerical study for the assessment of pollutant dispersion from Kostolac B power plant to Viminacium for different atmospheric conditions. Therm Sci. 2015;19(2):425–34.

    Google Scholar 

  40. Lelieveld J, Evans JS, Fnais M, Giannadaki D, Pozzer A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature. 2015;525(7569):367–71.

    CAS  Google Scholar 

  41. Levy JI, Biton L, Hopke PK, Zhang KM, Rector L. A cost-benefit analysis of a pellet boiler with electrostatic precipitator versus conventional biomass technology: a case study of an institutional boiler in Syracuse, New York. Environ Res. 2017;156:312–9.

    CAS  Google Scholar 

  42. McConnell R, Berhane K, Gilliland F, Molitor J, Thomas D, Lurmann F, et al. Prospective study of air pollution and Bronchitic symptoms in children with asthma. Am J Respir Crit Care Med. 2003;168(7):790–7.

    Google Scholar 

  43. McKain K, Wofsy SC, Nehrkorn T, Eluszkiewicz J, Ehleringer JR, Stephens BB. Assessment of ground-based atmospheric observations for verification of greenhouse gas emissions from an urban region. Proc Natl Acad Sci U S A (PNAS). 2012;109:8423–8.

    CAS  Google Scholar 

  44. McKain K, Down A, Raciti SM, Budney J, Hutyra LR, Floerchinger C, et al. Methane emissions from natural gas infrastructure and use in the urban region of Boston. Massachusetts Proc Natl Acad Sci U S A (PNAS). 2015;112:1941–6.

    CAS  Google Scholar 

  45. Muppidi S, Mahesh K. Direct numerical simulation of round turbulent jets in crossflow. J Fluid Mech. 2007;574:59–84.

    Google Scholar 

  46. Olaguer, Knipping, Shaw, & Ravindran. (2016). Microscale air quality impacts of distributed power generation facilities. J Air Waste Manage Assoc, 66(8), 795–806.

  47. Park J-H, Ahn JW, Kim KH, Son YS. Historic and futuristic review of electron beam technology for the treatment of SO2 and NOx in flue gas. Chem Eng J. 2019;355:351–66.

    CAS  Google Scholar 

  48. Petrov O, Bi X, Lau A. Impact assessment of biomass-based district heating systems in densely populated communities. Part I: dynamic intake fraction methodology. Atmos Environ. 2015;115:70–8.

    CAS  Google Scholar 

  49. Pope CA, Dockery DW. Health effects of fine particulate air pollution: lines that connect. J Air Waste Manage Assoc. 2006;56(6):709–42.

    CAS  Google Scholar 

  50. Richards PJ, Hoxey RP. Appropriate boundary conditions for computational wind engineering models using the k-epsilon turbulence model. J Wind Eng Ind Aerodyn. 1993;46–47:145–53.

    Google Scholar 

  51. Rivas E, Santiago JL, Lechón Y, Martín F, Ariño A, Pons JJ, et al. CFD modelling of air quality in Pamplona City (Spain): assessment, stations spatial representativeness and health impacts valuation. Sci Total Environ. 2019;649:1362–80.

    CAS  Google Scholar 

  52. Sabatino SD, Buccolieri R, Pulvirenti B, Britter RE. Flow and pollutant dispersion in street canyons using FLUENT and ADMS-urban. Environ Model Assess. 2008;13(3):369–81.

    Google Scholar 

  53. Samoli E. Short-term effects of nitrogen dioxide on mortality: an analysis within the APHEA project. Eur Respir J. 2006;27(6):1129–38.

    CAS  Google Scholar 

  54. Schwartz J, Dockery DW. Increased mortality in Philadelphia associated with daily air pollution concentrations. Am Rev Respir Dis. 1992;145(3):600–4.

    CAS  Google Scholar 

  55. Seinfeld JH, Pandis SN, Noone K. Atmospheric chemistry and physics: from air pollution to climate change. Phys Today. 1998;51(10):88–90.

    Google Scholar 

  56. Shan JW, Dimotakis PE. Reynolds-number effects and anisotropy in transverse-jet mixing. J Fluid Mech. 2006;566:47–96.

    Google Scholar 

  57. Soulhac L, Salizzoni P, Cierco F-X, Perkins R. The model SIRANE for atmospheric urban pollutant dispersion; part I, presentation of the model. Atmos Environ. 2011;45(39):7379–95.

    CAS  Google Scholar 

  58. Toja-Silva F, Peralta C, Lopez O, Navarro J, Cruz I. Roof region dependent wind potential assessment with different RANS turbulence models. J Wind Eng Ind Aerodyn. 2015;142:258–71.

    Google Scholar 

  59. Toja-Silva F, Chen J, Hachinger S, Hase F. CFD simulation of CO2 dispersion from urban thermal power plant: analysis of turbulent Schmidt number and comparison with Gaussian plume model and measurements. J Wind Eng Ind Aerodyn. 2017;169(177–193).

  60. Tong Z, Yang B, Hopke PK, Zhang KM. Microenvironmental air quality impact of a commercial-scale biomass heating system. Environ Pollut. 2017;220:1112–20.

    CAS  Google Scholar 

  61. Tsuchiya M, Murakami S, Mochida A, Kondo K, Ishida Y. Development of a new k-epsilon model for flow and pressure fields around bluff body. J Wind Eng Ind Aerodyn. 1997;67–68:169–82.

    Google Scholar 

  62. Velali E, Papachristou E, Pantazaki A, Choli-Papadopoulou T, Argyrou N, Tsourouktsoglou T, et al. Cytotoxicity and genotoxicity induced in vitro by solvent-extractable organic matter of size-segregated urban particulate matter. Environ Pollut. 2016;218:1350–62.

    CAS  Google Scholar 

  63. Walters DK, Leylek JH. A systematic computational methodology applied to a three-dimensional film cooling flow field. J Turbomach. 1997;119:777–85.

    Google Scholar 

  64. Wang L, Jin G, Xu Y. Desulfurization of coal using four ionic liquids with [HSO4]−. Fuel. 2019;236:1181–90.

    CAS  Google Scholar 

  65. Yang B, Gu J, Zhang T, Zhang KM. Near-source air quality impact of a distributed natural gas combined heat and power facility. Environ Pollut. 2019;246:650–7.

    CAS  Google Scholar 

  66. Yoshie R, Mochida A, Tominaga Y, Kataoka H, Harimoto K, Nozu T, et al. Cooperative project for CFD prediction of pedestrian wind environment in the Architectural Institute of Japan. J Wind Eng Ind Aerodyn. 2007;95:1551–78.

    Google Scholar 

Download references

Acknowledgements

This work is supported by grant from the Ministry of education and science of the Republic of Kazakhstan (AP09259783).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alibek Issakhov.

Ethics declarations

Conflict of interests

The author declares that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Issakhov, A., Mashenkova, A. The assessment of two different pollutants dispersion from a coal-fired power plant for various thermal regimes. J Environ Health Sci Engineer 19, 959–983 (2021). https://doi.org/10.1007/s40201-021-00662-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-021-00662-5

Keywords

Navigation