Skip to main content
Log in

Determination of real-time oxygen transfer rate based on an electrochemical method

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The interfacial oxygen transfer rate is one of the main factors to control the composition of alloys. The commonly employed method of studying the interfacial oxygen transfer rate is the chemical composition analysis; however, it is difficult to be studied in situ. Here, a new method of measuring the oxygen transfer rate at the gas–slag and slag–metal interfaces was reported based on electrochemical analyses. The interfacial oxygen transfer rate in the smelting process of Inconel 718 superalloy was investigated at 1723, 1773, 1823, and 1873 K. The experimental results show that the electrochemical method can measure the real-time oxygen content; hence, this method is promising in controlling the oxygen content in alloys. As the temperature increased, both the equilibrium oxygen content and the rate of oxygen absorption increased significantly, and the increase was the most obvious when the temperature was 1873 K. The possible reason is that the increase in temperature weakens the mass transfer resistance of the electric double layer at the interface, thus accelerating the oxygen transfer rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. B. Hernandez-Morales, A. Mitchell, Ironmak. Steelmak. 26 (1999) 423–438.

    Article  Google Scholar 

  2. A. Kharicha, E. Karimi-Sibaki, M. Wu, A. Ludwig, J. Bohacek, Steel Res. Int. 89 (2018) 1700100.

    Article  Google Scholar 

  3. M. Sasabe, Y. Kinoshita, Tetsu-to-Hagané 65 (1979) 1727–1736.

    Article  Google Scholar 

  4. J.H. Wei, Z.Y. Liu, Acta Metall. Sin. 30 (1994) 350–360.

    Google Scholar 

  5. C.B. Shi, X.C. Chen, H.J. Guo, Z.J. Zhu, X.L. Sun, Metall. Mater. Trans. B 44 (2013) 378–389.

    Article  Google Scholar 

  6. F. Wang, X.C. Chen, H.J. Guo, Adv. Mater. Res. 476–478 (2012) 218–226.

    Google Scholar 

  7. J.H. Wei, A. Mitchell, Acta Metall. Sin. 20 (1984) 387–405.

    Google Scholar 

  8. J.H. Wei, A. Mitchell, Acta Metall. Sin. 20 (1984) 406–413.

    Google Scholar 

  9. B.J. Zhang, C.F. Zhang, Met. Mater. Metall. Eng. 38 (2010) No. 6, 11–15.

    Google Scholar 

  10. X.G. Lu, F.S. Li, L.F. Li, G.Z. Zhou, Acta Metall. Sin. 35 (1999) 743–747.

    Google Scholar 

  11. A. Harada, N. Maruoka, H. Shibata, S. Kitamura, ISIJ Int. 53 (2013) 2110–2117.

    Article  Google Scholar 

  12. S.J. Kim, J. Suzuki, X. Gao, S. Ueda, S. Kitamura, J. Sustain. Metall. 2 (2016) 141–151.

    Article  Google Scholar 

  13. P.Y. Ni, T. Tanaka, M. Suzuki, M. Nakamoto, P.G. Jönsson, ISIJ Int. 58 (2018) 1979–1988.

    Article  Google Scholar 

  14. P.Y. Ni, T. Tanaka, M. Suzuki, M. Nakamoto, P.G. Jönsson, ISIJ Int. 59 (2019) 737–748.

    Article  Google Scholar 

  15. E. Karimi-Sibaki, A. Kharicha, M. Wu, A. Ludwig, J. Bohacek, Metall. Mater. Trans. B 51 (2020) 871–879.

    Article  Google Scholar 

  16. K. Kiukkola, C. Wagner, J. Electrochem. Soc. 104 (1957) 379–387.

    Article  Google Scholar 

  17. R.W. Li, Y.W. Zhou, M.L. Sun, Z. Gong, Y.Y. Guo, X.T. Yin, F.Y. Wu, W.T. Ding, J. Mater. Sci. Technol. 35 (2019) 2232–2237.

    Article  Google Scholar 

  18. D.J. Shin, D.J. Min, ISIJ Int. 53 (2013) 434–440.

    Article  Google Scholar 

  19. W. Kim, I. Sohn, ISIJ Int. 51 (2011) 63–70.

    Article  Google Scholar 

  20. W. Kim, D.J. Min, Y.S. Lee, J.H. Park, ISIJ Int. 49 (2009) 1882–1888.

    Article  Google Scholar 

  21. J.H. Liu, G.H. Zhang, Z. Wang, Metall. Mater. Trans. B 48 (2017) 3359–3363.

    Article  Google Scholar 

  22. K.E. Oberg, L.M. Friedman, W.M. Boorstein, R.A. Rapp, Metall. Trans. 4 (1973) 61–67.

    Article  Google Scholar 

  23. T. Liu, X.N. Wang, X.F. Zhang, X. Gao, L. Li, J.K. Yu, X.T. Yin, Sens. Actuat. B Chem. 277 (2018) 216–223.

    Article  Google Scholar 

  24. W. Jerzak, Z. Kalicka, Arch. Metall. Mater. 55 (2010) 441–447.

    Google Scholar 

  25. A. Karasev, H. Suito, Metall. Mater. Trans. B 30 (1999) 249–257.

    Article  Google Scholar 

  26. G.K. Sigworth, J.F. Elliott, G. Vaughn, G.H. Geiger, Can. Metall. Quart. 16 (1977) 104–110.

    Article  Google Scholar 

  27. T. Yoshikawa, K. Morita, Metall. Mater. Trans. B 38 (2007) 671–680.

    Article  Google Scholar 

  28. V.Y. Dashevskii, A.A. Aleksandrov, L.I. Leont’ev, Steel Transl. 45 (2015) 42–48.

  29. S.J. Li, G.G. Cheng, Z.Q. Miao, L. Chen, C.W. Li, X.Y. Jiang, ISIJ Int. 57 (2017) 2148–2156.

    Article  Google Scholar 

  30. S.C. Duan, X. Shi, M.C. Zhang, B. Li, W.S. Yang, F. Wang, H.J. Guo, J. Guo, Metall. Mater. Trans. B 51 (2020) 353–364.

    Article  Google Scholar 

  31. M. Sasabe, S. Kitamura, ISIJ Int. 33 (1993) 133–139.

    Article  Google Scholar 

  32. X. Huang, B. Li, Z. Liu, Metall. Mater. Trans. B 49 (2018) 709–722.

    Article  Google Scholar 

  33. A.J. Deng, D.D. Fan, H.C. Wang, C.H. Li, J. Iron Steel Res. Int. 27 (2020) 409–419.

    Article  Google Scholar 

  34. M. Sasabe, K.S. Goto, Metall. Trans. 5 (1974) 2225–2233.

    Article  Google Scholar 

  35. A. Mitchell, F. Reyes-Carmona, E. Samuelsson, Trans. Iron Steel Inst. Jpn. 24 (1984) 547–556.

    Article  Google Scholar 

  36. S.C. Duan, X. Shi, M.T. Mao, W.S. Yang, S.W. Han, H.J. Guo, J. Guo, Sci. Rep. 8 (2018) 5232.

    Article  Google Scholar 

  37. M.A. Rhamdhani, K.S. Coley, G.A. Brooks, Metall. Mater. Trans. B 36 (2005) 591–604.

    Article  Google Scholar 

  38. K. Mukai, ISIJ Int. 32 (1992) 19–25.

    Article  Google Scholar 

  39. D.A.R. Kay, A. Mitchell, M. Ram, J. Iron Steel Inst. 208 (1970) 141–146.

    Google Scholar 

  40. C.B. Shi, ISIJ Int. 60 (2020) 1083–1096.

    Article  Google Scholar 

  41. G.H. Zhang, K.C. Chou, K. Mills, Metall. Mater. Trans. B 45 (2014) 698–706.

    Article  Google Scholar 

  42. S. Radwitz, H. Scholz, B. Friedrich, H. Franz, in: Proc. 2015 Int. Symp. Liq. Met. Process. Cast., The Minerals Metals and Materials Society, Leoben, Austria, 2015, pp. 153–162.

Download references

Acknowledgements

The authors gratefully express their appreciation to National Natural Science Foundation of China (Nos. 51974153 and U1960203), the Joint Fund of State Key Laboratory of Marine Engineering and University of Science and Technology Liaoning (SKLMEA-USTL-201707), and the China Scholarship Council (201908210457).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wan-ming Li or De-jun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Ss., Li, Wm., Li, Dj. et al. Determination of real-time oxygen transfer rate based on an electrochemical method. J. Iron Steel Res. Int. 29, 418–424 (2022). https://doi.org/10.1007/s42243-021-00608-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00608-z

Keywords

Navigation