Skip to main content
Log in

On semiclassical states for Dirac equations

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

This article has been updated

Abstract

This paper aims to study the existence and concentration of solutions for the stationary Dirac equation in \(\mathbb {R}^3\) with critical nonlinearities:

$$\begin{aligned} i\varepsilon \sum \limits _{k=1}^3\alpha _k\partial _k u-a\beta u+V(x)u=P(x)f(|u|)u+Q(x)g(|u|)u, \end{aligned}$$

where \(\varepsilon >0\) is a small parameter and \(a>0\) is a constant. We also show the semiclassical solutions \(\omega _\varepsilon \) with maximum points \(x_\varepsilon \) concentrating at a special set \({\mathcal {H}}_{P}\) characterized by V(x), P(x) and Q(x), and for any sequence, \(x_\varepsilon \rightarrow x_0\in {\mathcal {H}}_{P}, v_\varepsilon (x):=\omega _\varepsilon (\varepsilon x+x_\varepsilon )\) converges in \(H^1(\mathbb {R}^3,\mathbb {C}^4)\) to a least energy solution u of

$$\begin{aligned} i\sum \limits _{k=1}^3\alpha _k\partial _k u-a\beta u+V(x_0)u=P(x_0)f(|u|)u+Q(x_0)g(|u|)u. \end{aligned}$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

  • 25 May 2021

    The original online version of this article was revised: The first page was blank in the original publication and it has been corrected now.

References

  1. Ackermann, N.: A nonlinear superposition principle and multibump solutions of periodic Schrödinger equations. J. Funct. Anal. 234(2), 277–320 (2006)

    Article  MathSciNet  Google Scholar 

  2. Bartsch, T., Ding, Y.: Solutions of nonlinear Dirac equations. J. Differ. Equ. 226(1), 210–249 (2006)

    Article  MathSciNet  Google Scholar 

  3. Benhassine, A.: On nonlinear Dirac equations. J. Math. Phys. 60, 011510 (2019). https://doi.org/10.1063/1.5053684

    Article  MathSciNet  MATH  Google Scholar 

  4. Cazenave, T., Vazquez, L.: Existence of localized solutions for a classical nonlinear Dirac field. Commun. Math. Phys. 105(1), 35–47 (1986)

    Article  MathSciNet  Google Scholar 

  5. Dautray, R., Lions, J.: Mathematical Analysis and Numerical Methods for Science and Technology, vol. 3. Springer, Berlin (1990)

    Book  Google Scholar 

  6. Ding, Y.: Semi-classical ground states concentrating on the nonlinear potential for a Dirac equation. J. Differ. Equ. 249(5), 1015–1034 (2010)

    Article  MathSciNet  Google Scholar 

  7. Ding, Y., Ruf, B.: Existence and concentration of semiclassical solutions for Dirac equations with critical nonlinearities. SIAM J. Math. Anal. 44(6), 3755–3785 (2012)

    Article  MathSciNet  Google Scholar 

  8. Ding, Y., Wei, J.: Stationary states of nonlinear Dirac equations with general potentials. Rev. Math. Phys. 20(8), 1007–1032 (2008)

    Article  MathSciNet  Google Scholar 

  9. Ding, Y., Xu, T.: Localized concentration of semi-classical states for nonlinear Dirac equations. Arch. Ration. Mech. Anal. 216(2), 415–447 (2015)

    Article  MathSciNet  Google Scholar 

  10. Esteban, M., Séré, E.: Stationary states of the nonlinear Dirac equation: a variational approach. Commun. Math. Phys. 171(2), 323–350 (1995)

    Article  MathSciNet  Google Scholar 

  11. Figueiredo, G.M., Pimenta, M.T.O.: Existence of ground state solutions to Dirac equations with vanishing potentials at infinity. J. Differ. Equ. 262(1), 486–505 (2017)

    Article  MathSciNet  Google Scholar 

  12. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1983)

    Book  Google Scholar 

  13. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case. II. Ann. Inst. Henri Poincaré Anal. Non Linéaire 1(4), 223–283 (1984)

    Article  MathSciNet  Google Scholar 

  14. Ranada, A.F.: Classical nonlinear Dirac field models of extended particles. Math. Phys. Stud. 4, 271–291 (1983)

    Google Scholar 

  15. Simon, B.: Schrödinger semigroups. Bull. Am. Math. Soc. (N.S.) 7(3), 447–526 (1982)

    Article  Google Scholar 

  16. Szulkin, A., Weth, T.: Ground state solutions for some indefinite variational problems. J. Funct. Anal. 257(12), 3802–3822 (2009)

    Article  MathSciNet  Google Scholar 

  17. Thaller, B.: The Dirac Equation. Texts and Monographs in Physics. Springer, Berlin (1992)

    Book  Google Scholar 

  18. Zhang, J., Zhang, W., Zhao, F.: Existence and exponential decay of ground-state solutions for a nonlinear Dirac equation. Z. Angew. Math. Phys. 69(5), 116 (2018)

    Article  MathSciNet  Google Scholar 

  19. Zhang, X., Wang, Z.: Semiclassical states of nonlinear Dirac equations with degenerate potential. Ann. Mat. Pura Appl. (4) 198(6), 1955–1984 (2019)

    Article  MathSciNet  Google Scholar 

  20. Zhao, F., Ding, Y.: Infinitely many solutions for a class of nonlinear Dirac equations without symmetry. Nonlinear Anal. 70(2), 921–935 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank the referees for their careful reading, critical comments and helpful suggestions, which helped to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderrazek Benhassine.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benhassine, A. On semiclassical states for Dirac equations. Z. Angew. Math. Phys. 72, 110 (2021). https://doi.org/10.1007/s00033-021-01541-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-021-01541-7

Keywords

Mathematics Subject Classification

Navigation