Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intrataxonomic trends in herbivore enamel δ13C are decoupled from ecosystem woody cover

Abstract

Analysis of enamel stable carbon isotopes (δ13Cenamel) of fossil herbivores is an important tool for making inferences about Plio-Pleistocene vegetation structure in Africa and the environmental context of hominin evolution. Many palaeoecological studies implicitly or explicitly assume that individual variation in C3–C4 plant consumption among fossil herbivores directly reflects the abundance of C3 (trees, shrubs) or C4 (low-altitude tropical grasses) vegetation. However, a strong link between δ13Cenamel of herbivores and ecosystem vegetation structure has not been rigorously established. Here we combine δ13Cenamel data from a large dataset (n = 1,643) with multidecadal Landsat estimates of C3 woody cover across 30 African ecosystems to show that there is little relationship between intrataxonomic variation in δ13Cenamel and vegetation structure. This is especially true when removing forested ecosystems (>80% woody cover)—which numerous lines of evidence suggest are rare in the Plio-Pleistocene fossil record of eastern Africa—from our analyses. Our findings stand in contrast with the common assumption that variation in herbivore δ13Cenamel values reflects changes in the relative abundance of C3–C4 vegetation. We conclude that analyses using herbivore δ13Cenamel data to shed light on the environmental context of hominin evolution should look to explicitly community-level approaches for making vegetation inferences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ecosystem map.
Fig. 2: Woody cover of sub-Saharan African ecosystems.
Fig. 3: Relationship between δ13Cenamel values and mean woody cover across African herbivore taxa.
Fig. 4: Distribution of woody cover in the Plio-Pleistocene fossil record and relationship between δ13Cenamel values and mean woody cover for non-forest ecosystems.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article (and its Supplementary Information files). Source data are provided with this paper.

Code availability

The Google Earth Engine code used can be found at: https://code.earthengine.google.com/e3e1520a7b0fcd0c26ed567f6653a9a3.

References

  1. Potts, R. Hominin evolution in settings of strong environmental variability. Quat. Sci. Rev. 73, 1–13 (2013).

    Article  Google Scholar 

  2. Kingston, J. D. Shifting adaptive landscapes: progress and challenges in reconstructing early hominid environments. Am. J. Phys. Anthropol. 134, 20–58 (2007).

    Article  Google Scholar 

  3. Levin, N. E. Environment and climate of early human evolution. Annu. Rev. Earth Planet. Sci. 43, 405–429 (2015).

    Article  CAS  Google Scholar 

  4. Campisano, C. J. et al. The Hominin sites and Paleolakes Drilling Project: high-resolution paleoclimate records from the East African Rift system and their implications for understanding the environmental context of hominin evolution. PaleoAnthropology 2017, 1–43 (2017).

    Google Scholar 

  5. Lupien, R. L. et al. Vegetation change in the Baringo Basin, East Africa across the onset of Northern Hemisphere glaciation 3.3–2.6 Ma. Palaeogeogr. Palaeoclimatol. Palaeoecol. 570, 109426 (2019).

    Article  Google Scholar 

  6. Yost, C. L. et al. Phytoliths, pollen, and microcharcoal from the Baringo Basin, Kenya reveal savanna dynamics during the Plio-Pleistocene transition. Palaeogeogr. Palaeoclimatol. Palaeoecol. 570, 109779 (2020).

    Article  Google Scholar 

  7. Reed, K. E. Paleoecological patterns at the Hadar hominin site, Afar regional state, Ethiopia. J. Hum. Evol. 54, 743–768 (2008).

    Article  PubMed  Google Scholar 

  8. Kovarovic, K., Su, D. F., Lintulaakso, K. in Methods in Paleoecology (eds Croft, D. A., Su. D. F. & Simpson, S. W.) 351–372 (Springer, 2018).

  9. Barr, W. A. in Methods in Paleoecology (eds Croft, D. A., Su. D. F. & Simpson, S. W.) 339–349 (Springer, 2018).

  10. Fortelius, M. et al. An ecometric analysis of the fossil mammal record of the Turkana Basin. Philos. Trans. R. Soc. Lond. B 371, 20150232 (2016).

    Article  Google Scholar 

  11. Polly, P. D. et al. History matters: ecometrics and integrative climate change biology. Proc. R. Soc. Lond. B 278, 1131–1140 (2011).

    Google Scholar 

  12. Wang, Y. & Cerling, T. E. A model of fossil tooth enamel and bone diagenesis: implications for stable isotope studies and paleoenvironment reconstruction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 107, 281–289 (1994).

    Article  Google Scholar 

  13. Bocherens, H., Koch, P. L., Mariotti, A., Geraads, D. & Jaeger, J. J. Isotopic biogeochemistry (13C, 18O) of mammalian enamel from African Pleistocene hominid sites. Palaios 11, 306–318 (1996).

    Article  Google Scholar 

  14. Schoeninger, M. J., Reeser, H. & Hallin, K. Paleoenvironment of Australopithecus anamensis at Allia Bay, East Turkana, Kenya: evidence from mammalian herbivore enamel stable isotopes. J. Anthropol. Archaeol. 22, 200–207 (2003).

    Article  Google Scholar 

  15. Levin, N. E., Simpson, S. W., Quade, J., Cerling, T. E. & Frost, S. R. Herbivore enamel carbon isotopic composition and the environmental context of Ardipithecus at Gona, Ethiopia. The geology of early humans in the Horn of Africa. Geol. Soc. Am. Spec. Pap. 446, 215–234 (2008).

    Google Scholar 

  16. Levin, N. E., Haile-Selassie, Y., Frost, S. R. & Saylor, B. Z. Dietary change among hominins and cercopithecids in Ethiopia during the early Pliocene. Proc. Natl Acad. Sci. USA 112, 12304–12309 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kingston, J. D. in Paleontology and Geology of Laetoli: Human Evolution in Context (ed. Harrison, T.) 293–328 (Springer, 2011).

  18. Cerling, T. E. et al. Dietary changes of large herbivores in the Turkana Basin, Kenya from 4 to 1 Ma. Proc. Natl Acad. Sci. USA 112, 11467–11472 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wynn, J. G. et al. Dietary flexibility of Australopithecus afarensis in the face of paleoecological change during the middle Pliocene: faunal evidence from Hadar, Ethiopia. J. Hum. Evol. 99, 93–106 (2016).

    Article  PubMed  Google Scholar 

  20. Robinson, J. R., Rowan, J., Campisano, C. J., Wynn, J. G. & Reed, K. E. Late Pliocene environmental change during the transition from Australopithecus to Homo. Nat. Ecol. Evol. 1, 0159 (2017).

    Article  Google Scholar 

  21. Ambrose, S. H. & DeNiro, M. J. The isotopic ecology of East African mammals. Oecologia 69, 395–406 (1986).

    Article  PubMed  Google Scholar 

  22. Cerling, T. E. & Harris, J. M. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120, 347–363 (1999).

    Article  PubMed  Google Scholar 

  23. Sponheimer, M. et al. Diets of southern African Bovidae: stable isotope evidence. J. Mammal. 84, 471–479 (2003).

    Article  Google Scholar 

  24. Tieszen, L. L., Senyimba, M. M., Imbaba, S. K. & Troughton, J. H. The distribution of C3 and C4 grasses and carbon isotope discrimination along an altitudinal and moisture gradient in Kenya. Oecologia 37, 337–350 (1979).

    Article  PubMed  Google Scholar 

  25. Tiezsen, L. L., Boutton, T., Tesdahl, K. & Slade, N. Fractionation and turnover of stable carbon isotopes in animal tissues: implications for the 13C analysis of diet. Oecologia 57, 32–37 (1983).

    Article  Google Scholar 

  26. O’Leary, M. H. Carbon isotopes in photosynthesis. Bioscience 38, 328–336 (1988).

    Article  Google Scholar 

  27. Kingdon, J. et al. Mammals of Africa Vol. 1 (A&C Black, 2013).

  28. Kingston, J. D. & Harrison, T. Isotopic dietary reconstructions of Pliocene herbivores at Laetoli: implications for early hominin paleoecology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 243, 272–306 (2007).

    Article  Google Scholar 

  29. Patterson, D. B. et al. Comparative isotopic evidence from East Turkana supports a dietary shift within the genus Homo. Nat. Ecol. Evol. 3, 1048–1056 (2019).

    Article  PubMed  Google Scholar 

  30. Sponheimer, M. & Lee-Thorp, J. A. Using carbon isotope data of fossil bovid communities for palaeoenvironmental reconstruction: research articles: human origins research in South Africa. S. Afr. J. Sci. 99, 273–275 (2003).

    CAS  Google Scholar 

  31. Lee-Thorp, J. A., Sponheimer, M. & Luyt, J. Tracking changing environments using stable carbon isotopes in fossil tooth enamel: an example from the South African hominin sites. J. Hum. Evol. 53, 595–601 (2007).

    Article  PubMed  Google Scholar 

  32. Bedaso, Z., Wynn, J. G., Alemseged, Z. & Geraads, D. Paleoenvironmental reconstruction of the Asbole fauna (Busidima Formation, Afar, Ethiopia) using stable isotopes. Geobios 43, 165–177 (2010).

    Article  Google Scholar 

  33. Bedaso, Z. K., Wynn, J. G., Alemseged, Z. & Geraads, D. Dietary and paleoenvironmental reconstruction using stable isotopes of herbivore tooth enamel from middle Pliocene Dikika, Ethiopia: implication for Australopithecus afarensis habitat and food resources. J. Hum. Evol. 64, 21–38 (2013).

    Article  PubMed  Google Scholar 

  34. Leichliter, J. N. et al. Small mammal insectivore carbon isotopes as environmental proxies in a South African savanna ecosystem. Am. J. Phys. Anthropol. 159, 206–207 (2016).

    Google Scholar 

  35. Codron, J. et al. Landscape-scale feeding patterns of African elephant inferred from carbon isotope analysis of feces. Oecologia 165, 89–99 (2011).

    Article  PubMed  Google Scholar 

  36. Marston, C. G. et al. ‘Remote’ behavioural ecology: do megaherbivores consume vegetation in proportion to its presence in the landscape? PeerJ 8, e8622 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hernandez-Fernández, M. & Vrba, E. S. Plio-Pleistocene climatic change in the Turkana Basin (East Africa): evidence from large mammal faunas. J. Hum. Evol. 50, 595–626 (2006).

    Article  PubMed  Google Scholar 

  38. Lintulaakso, K. & Kovarovic, K. Diet and locomotion, but not body size, differentiate mammal communities in worldwide tropical ecosystems. Palaeogeogr. Palaeoclimatol. Palaeoecol. 454, 20–29 (2016).

    Article  Google Scholar 

  39. Barr, W. A. Bovid locomotor functional trait distributions reflect land cover and annual precipitation in sub-Saharan Africa. Evol. Ecol. Res. 18, 253–269 (2017).

    Google Scholar 

  40. Eronen, J. T. et al. Precipitation and large herbivorous mammals I: estimates from present-day communities. Evol. Ecol. Res. 12, 217–233 (2010).

    Google Scholar 

  41. Eronen, J. T. et al. Precipitation and large herbivorous mammals II: application to fossil data. Evol. Ecol. Res. 12, 235–248 (2010).

    Google Scholar 

  42. Cerling, T. E. et al. Woody cover and hominin environments in the past 6 million years. Nature 476, 51–56 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. White, T. D. et al. Macrovertebrate paleontology and the Pliocene habitat of Ardipithecus ramidus. Science 326, 67–93 (2009).

    Article  Google Scholar 

  44. Venter, Z. S., Cramer, M. D. & Hawkins, H. J. Drivers of woody plant encroachment over Africa. Nat. Commun. 9, 2272 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kohn, M. J. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo) ecology and (paleo) climate. Proc. Natl Acad. Sci. USA 107, 19691–19695 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Du, A., Robinson, J. R., Rowan, J., Lazagabaster, I. A. & Behrensmeyer, A. K. Stable carbon isotopes from paleosol carbonate and herbivore enamel document differing paleovegetation signals in the eastern African Plio-Pleistocene. Rev. Palaeobot. Palynol. 261, 41–52 (2019).

    Article  Google Scholar 

  47. Brown, F. H., McDougall, I. & Gathogo, P. N. in The Paleobiology of Australopithecus (eds Reed, K. E. et al.) 7–20 (Springer, 2013).

  48. McDougall, I. et al. New single crystal 40Ar/39Ar ages improve time scale for deposition of the Omo Group, Omo–Turkana Basin, East Africa. J. Geol. Soc. 169, 213–226 (2012).

    Article  CAS  Google Scholar 

  49. Herries, A. I. et al. in The Paleobiology of Australopithecus (eds Reed, K. E., Fleagle, J. G. & Leakey, R. E.) 21–40 (Springer, 2013).

  50. Pickering, R. et al. U–Pb-dated flowstones restrict South African early hominin record to dry climate phases. Nature 565, 226–229 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Erena, M. G., Bekele, A. & Debella, H. J. Diet composition of forest inhabiting Cape buffalo (Syncerus caffer caffer) in western Ethiopia. Int. J. Ecol. Environ. Sci. 45, 165–178 (2019).

    Google Scholar 

  52. Pianka, E. R. in Theoretical Ecology. Principles and Applications (ed. May, R. M.) 114–141 (Blackwell Scientific, 1976).

  53. Schoener, T. W. The controversy over interspecific competition: despite spirited criticism, competition continues to occupy a major domain in ecological thought. Am. Sci. 70, 586–595 (1982).

    Google Scholar 

  54. Gordon, I. J. & Prins, H. H. T. in The Ecology of Browsing and Grazing (eds Gordon, I. J. & Prins, H. H. T.) 309–321 (Springer, 2008).

  55. O’Kane, C. A., Duffy, K. J., Page, B. R. & Macdonald, D. W. Effects of resource limitation on habitat usage by the browser guild in Hluhluwe-iMfolozi Park, South Africa. J. Trop. Ecol. 29, 39–47 (2013).

    Article  Google Scholar 

  56. Codron, J. et al. Taxonomic, anatomical, and spatio-temporal variations in the stable carbon and nitrogen isotopic compositions of plants from an African savanna. J. Archaeol. Sci. 32, 1757–1772 (2005).

    Article  Google Scholar 

  57. Codron, D., Codron, J., Lee-thorp, A. J., Sponheimer, M. & Brink, S. J. Dietary variation in impala Aepyceros melampus recorded by carbon isotope composition of feces. Acta Zool. Sin. 52, 1015–1025 (2006).

    CAS  Google Scholar 

  58. Uno, K. T. et al. High-resolution stable isotope profiles of modern elephant (Loxodonta africana) tusk dentin and tail hair from Kenya: implications for identifying seasonal variability in climate, ecology, and diet in ancient proboscideans. Palaeogeogr. Palaeoclimatol. Palaeoecol. 559, 109962 (2020).

    Article  Google Scholar 

  59. Uno, K. T., Polissar, P. J., Jackson, K. E. & deMenocal, P. B. Neogene biomarker record of vegetation change in eastern Africa. Proc. Natl Acad. Sci. USA 113, 6355–6363 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Owen-Smith, R. N. Megaherbivores: The Influence of Very Large Body Size on Ecology (Cambridge Univ. Press, 1988).

  61. Uno, K. T. et al. Forward and inverse methods for extracting climate and diet information from stable isotope profiles in proboscidean molars. Quat. Intern. 557, 92–109 (2020).

    Article  Google Scholar 

  62. White, F. The Vegetation of Africa: A Descriptive Memoir to Accompany the UNESCO/AETFAT/UNSO Vegetation Map of Africa (3 plates), 1:5,000,000 (UNESCO, 1983).

  63. Uno, K. T. et al. A Pleistocene palaeovegetation record from plant wax biomarkers from the Nachukui Formation, West Turkana, Kenya. Philos. Trans. R. Soc. Lond. B 371, 20150235 (2016).

    Article  Google Scholar 

  64. Behrensmeyer, A. K., Kidwell, S. M. & Gastaldo, R. A. Taphonomy and paleobiology. Paleobiology 26, 103–147 (2000).

    Article  Google Scholar 

  65. Faith, J. T., Du, A. & Rowan, J. Addressing the effects of sampling on ecometric-based paleoenvironmental reconstructions. Palaeogeogr. Palaeoclimatol. Palaeoecol 528, 175–185 (2019).

    Article  Google Scholar 

  66. Shorrocks, B. & Bates, W. The Biology of African Savannahs (Oxford Univ. Press, 2015).

  67. Tieszen, L. L. Natural variations in the carbon isotope values of plants: implications for archaeology, ecology, and paleoecology. J. Archaeol. Sci. 18, 227–248 (1991).

    Article  Google Scholar 

  68. Cornwell, W. K. et al. Climate and soils together regulate photosynthetic carbon isotope discrimination within C3 plants worldwide. Glob. Ecol. Biogeogr. 27, 1056–1067 (2018).

    Article  Google Scholar 

  69. Luyt, J., Hare, V. J. & Sealy, J. The relationship of ungulate δ13C and environment in the temperate biome of southern Africa, and its palaeoclimatic application. Palaeogeogr. Palaeoclimatol. Palaeoecol. 514, 282–291 (2019).

    Article  Google Scholar 

  70. Protected Planet: The World Database on Protected Areas (WDPA) (UNEP-WCMC and IUCN, 2020); www.protectedplanet.net

  71. ArcGIS Desktop Release 10 (Environmental Systems Research Institute, 2012).

  72. Ogutu, J. et al. Changing wildlife populations in Nairobi national park and adjoining Athi-Kaputiei plains: collapse of the migratory wildebeest. Open Conserv. Biol. J. 7, 11–26 (2013).

    Article  Google Scholar 

  73. Forest Atlas of the Democratic Republic of the Congo (Ministry of Environment and Sustainable Development of the Democratic Republic of the Congo and World Resources Institute, 2020); https://www.wri.org/resources/maps/forest-atlas-democratic-republic-congo

  74. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019); https://www.R-project.org/

  75. Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.R.R. and J.R. were responsible for the conceptualization of the study and writing the original draft. J.R.R., J.R. and W.A.B. were responsible for the visualization of the study. J.R.R., J.R., W.A.B., M.S. undertook the formal analysis. All authors were responsible for the methodology and contributed to and approved the final version of the manuscript.

Corresponding author

Correspondence to Joshua R. Robinson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Ecology & Evolution thanks Michaela Ecker and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Removing high elevation ecosystems.

Relationship between δ13Cenamel values and mean woody cover across African herbivore taxa excluding high elevation ecosystems (those spanning > 2000 m). Gray line and 95% confidence intervals show the linear fit.

Source data

Extended Data Fig. 2 Removing forested ecosystems.

Relationship between δ13Cenamel values and mean woody cover across African herbivore taxa excluding habitats with ≤80% mean woody cover. Gray line and 95% confidence intervals show the linear fit.

Source data

Extended Data Fig. 3 Proposed community approach.

Relationship between community δ13C values and mean woody cover across twenty-two African ecosystems (A). Gray line and 95% confidence intervals show linear (B) and quadratic (C) fits.

Source data

Supplementary information

Supplementary Information

Supplementary discussion, Tables 1–6 and references.

Reporting Summary

Peer Review Information

Supplementary Data 1

Recent carbon isotopic data from 30 African ecosystems used in these analyses (a subset of data from Cerling et al. 2015), and recent carbon isotopic data used for preliminary community analyses.

Source data

Source Data Fig. 1

Lat/Long data for study site locations (Statistical Source Data).

Source Data Fig. 2

Woody cover means and standard deviations (Statistical Source Data).

Source Data Fig. 3

Woody cover and carbon isotope values (Statistical Source Data).

Source Data Fig. 4

Paleosol counts (a) and slope values (b) (Statistical Source Data).

Source Data Extended Data Fig. 1

Woody cover and carbon isotope values without high elevation ecosystems (Statistical Source Data).

Source Data Extended Data Fig. 2

Woody cover and carbon isotope values without forested ecosystems (Statistical Source Data).

Source Data Extended Data Fig. 3

Community carbon isotope measure and woody cover for twenty-two modern ecosystems (Statistical Source Data).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robinson, J.R., Rowan, J., Barr, W.A. et al. Intrataxonomic trends in herbivore enamel δ13C are decoupled from ecosystem woody cover. Nat Ecol Evol 5, 995–1002 (2021). https://doi.org/10.1038/s41559-021-01455-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-021-01455-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing