Skip to main content
Log in

Access pricing in network industries with mixed oligopoly

  • Original Article
  • Published:
Journal of Regulatory Economics Aims and scope Submit manuscript

Abstract

We characterize optimal regulated access prices in mixed oligopoly network industries where a private, profit-maximizing firm competes against a public enterprise after purchasing an essential input (e.g., network access). Optimal access prices often are lower for the private firm than for the public enterprise, and can be particularly low for a relatively efficient private supplier. In contrast to a private, profit-maximizing input supplier, the regulator reduces the access price charged to a private supplier as it becomes more efficient. The optimal access price for a private firm is the same whether it competes against another private firm or a public enterprise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. See Bös (1986), Parris et al. (1987), Edwards and Waverman (2006), Hauge et al. (2009), and Simmons (2018), for example. Public and private firms also regularly compete in the banking, education, health care, and postal sectors. Kowalski et al. (2013, p. 5) report that in 2011, more than 10% of the companies on Forbes’ list of the largest 2000 companies were public enterprises. Del Bo et al. (2017). observe that public enterprises play a relatively pronounced role in the economies of China, Russia, Brazil, India, France, and Germany. Bos (1986, p.  20) observes “There is almost no good or service which has not been offered by a public enterprise at some time in some country.”

  2. The government prices access to the broadband network it owns in New Zealand (https://ufb.org.nz) and Stockholm (http://www.stokab.se), for example. The Canadian Competition Bureau has recently proposed regulation of the prices at which incumbent suppliers of wireless telecommunications services must sell network access to competitors (Corcoran 2019).

  3. Section 2 identifies relevant studies.

  4. In contrast, as explained further below, a profit-maximizing supplier of access often increases the price it charges for access as the buyer becomes more efficient.

  5. We also characterize optimal access prices in the more standard setting where both retail suppliers are private firms. In this setting, the regulator optimally sets a lower access price for the most efficient private supplier. This favoring of the stronger competitor is optimal because unfettered competition leads the more efficient supplier to produce less than its welfare-maximizing share of industry output. Masmoudi and Prothais (1994) provide a corresponding observation in a setting with downstream Cournot competition.

  6. Our finding that discriminatory access pricing can enhance welfare substantially suggests that such pricing might warrant consideration in settings where it is not presently practiced.

  7. The U.S. Federal Communications Commission (2021) observes that “Pursuant to Section 611 of the Communications Act, local franchising authorities may require cable operators to set aside channels for public, educational, or governmental (“PEG”) use.”

  8. The Connecticut State Office of Consumer Counsel reports that in the State of Connecticut, “Each town, city, borough, fire district or the Department of Transportation shall have the right to occupy and use for any purpose, without payment therefore, one gain upon each public utility pole or in each underground communications duct system installed by a public service company within the limits of any such town, city, borough or district.”

  9. Matsumura and Matsushima (2004) also consider endogenous costs in mixed oligopoly by allowing industry producers to undertake cost-reducing investment.

  10. We analyze settings in which neither downstream producer is vertically integrated. See Bárcena-Ruiz and Garzón (2018), for example, for an analysis of the interaction between a vertically-integrated public enterprise and a downstream rival that is not vertically integrated.

  11. Jullien et al. (2010) analyze the merits of precluding the operation of a public enterprise to limit duplicative investment and/or the crowding out of private investment. Armstrong et al. (1994, pp. 150-1) analyze the optimal design of access prices when entry by prospective retail suppliers is unimpeded. We assume two firms always operate downstream and no further entry is feasible. Armstrong (2002, pp. 311–321) and Armstrong and Sappington (2007, pp. 1672–1675) consider the design of access prices in the presence of regulated retail tariffs. We assume the retail firms set their preferred retail prices, taking access prices as given.

  12. The supply of access can impose important opportunity costs (reduced retail profit) on a vertically-integrated retail supplier. See Willig (1979), Baumol (1983), Baumol and Sidak (1994), Armstrong et al. (1996), Baumol et al. (1997), Laffont and Tirole (2000), Armstrong (2002), and Vogelsang (2003), for example.

  13. For simplicity, we also abstract from asymmetric information about industry cost structures. (See Laffont and Tirole (1993, 1994) and Jullien et al. (2010) for analyses of this issue.) In addition, we do not allow the retail firms to secure the essential input from sources other than the regulated upstream supplier. See Armstrong et al. (1996), Armstrong (2002), and Laffont and Tirole (1994), for example, for analyses of how the possibility of “bypass” affects the optimal structuring of access prices.

  14. Our focus on regulated access prices also differs from the focus in studies of privately-negotiated access prices (e.g., Sappington and Unel 2005; Besanko and Cui 2019).

  15. Armstrong (1998, 2002)), Laffont et al. (1998a, 1998b), Laffont and Tirole (2000), and Vogelsang (2003), for example, consider related settings in which unregulated owners of private networks independently set charges for access to their networks. For example, supplier A of wireless telephone service might set the price that rival supplier B must pay to complete its customers’ calls to supplier A’s customers, and vice versa. These studies identify conditions under which profit-maximizing network owners set high reciprocal access charges in order to foster higher retail prices.

  16. The higher price arises because the more efficient supplier often has a more inelastic demand for the input. Arya and Mittendorf (2010) demonstrate that a supplier’s demand for the input may become more elastic if it operates in multiple retail markets, some of which are characterized by limited demand.

  17. Miklós-Thal and Shaffer (2019) characterize the profit-maximizing policy for a monopoly supplier that can link the nonlinear tariff it charges for its critical input to the market in which the input is employed. The authors find that in settings where the intensity of competition is similar across markets, the monopolist often supplies the input on less favorable terms in markets with higher monopoly prices.

  18. The representative consumer chooses \(x_{1}\) and \(x_{2}\) to maximize \( U(x_{1},x_{2})-p_{1}\,x_{1}-p_{2}\,x_{2}\), giving rise to inverse demand functions \(p_{i}\,=\,u_{i}-\frac{1}{1\,+\,b}\,x_{i}-\frac{b}{1\,+\,b}\,x_{j}\) for \(\,i,j\in \left\{ 1,2\right\} \) (\(j\ne i\)).

  19. It is readily verified that \(\frac{\partial ^{2}U(\cdot )}{\partial x_{1}\partial x_{2}}=-\,\frac{b}{1\,+\,b}<0\), so the marginal utility of \( x_{i}\) declines as \(x_{j}\) increases (for \(i,j\in \{1,2\}\), \(j\ne i\)). Furthermore, because \(\frac{b}{1\,+\,b}\) is increasing in b, the marginal utility of \(x_{i}\) declines more rapidly as \(x_{j}\) increases when b is larger.

  20. We focus on this objective for the public enterprise for expositional ease. The proof of Lemma 1 (which presents our key analytic results) considers the more general setting in which downstream supplier \( i\in \{1,2\}\) acts to maximize its profit plus the fraction \(\alpha _{i}\in \left[ \,0,1\,\right] \) of consumer surplus.

  21. Explicit consideration of the more standard setting in which both retail suppliers are private, profit-maximizing firms serves two purposes. First, it facilitates documentation of the primary differences between our analysis and more standard analyses. Second, it allows us to contribute to the more standard literature findings that, to our knowledge, are novel.

  22. Our findings do not vary with the objective of the upstream producer because the regulator dictates the (access) prices for the firm’s product.

  23. As long as aggregate industry profit is non-negative, the regulator can ensure non-negative profit for each downstream supplier through suitable structuring of the fixed component of the two-part access tariffs. A negative fixed charge can serve to deliver the subsidy a retail producer might require to ensure its financial viability (i.e., non-negative profit).

  24. The regulator also sets fixed access charges \(T_{1}\) and \(T_{2}\) for firms 1 and 2, respectively. We focus on the regulator’s choice of access prices \( w_{1}\) and \(w_{2}\) for expositional ease.

  25. See the Appendix and Cui and Sappington (2021) for details.

  26. Observe from expression (6) that \(w_{2}^{\bullet *}>c_{u}\) if \( v^{\bullet *}>\frac{\Delta _{2}}{b\,\Delta _{1}\,}\).

  27. It is readily verified that when \(F>0\), higher equilibrium shadow values of industry profit are associated with higher access prices, ceteris paribus (i.e., \(\frac{\partial w_{i}^{\bullet *}}{\partial v^{\bullet *}}>0\) for \(i\in \{1,2\}\)). Higher equilibrium shadow values imply it is more constraining to ensure zero industry profit, i.e., retail prices must increase. Higher access prices induce higher retail prices.

  28. A change in the efficiency of firm i should be interpreted as a change in \(u_{i}\) or \(c_{i}\). A change in \(c_{u}\) affects both \(\Delta _{1}\) and \(\Delta _{2}\).

  29. The private firm’s output increases as its efficiency increases (i.e., \( \frac{dX_{2}^{\bullet *}}{d\Delta _{2}}\,>\,0\)).

  30. Formally, \(\frac{dv^{\bullet *}}{d\Delta _{2}}\,<\,0\), from Lemma 2.

  31. Because \(p_{1}^{*}= w_{1}^{*}+c_{1}\) (Corollary 1), the regulator can only induce the public firm to lower its retail price by reducing \(w_{1}^{*}\).

  32. When b is sufficiently large, so the competitive interaction between the two private suppliers is pronounced, the regulator may increase \( w_{1}^{0*}\) as \(\Delta _{2}\) increases to ensure firm 2 serves a sufficiently large number of consumers. To illustrate, suppose \(b=0.9\), \(u_{1}=20\), \(c_{u}=5,\) \(c_{1}=c_{2}=2\), \(F= 50 \), and \(\gamma =1\). Then \(w_{1}^{0*}\) increases as \(u_{2}\) increases between 15 and 25 (so \(\Delta _{2}\) increases between 8 and 18).

  33. It can be shown that if \(b=0.9\), \(u_{2}=20\), \(c_{u}=5,\) \( c_{1}=3\), \(c_{2}=2\), \(F=50\), and \(\gamma =1\), then \(w_{1}^{*}\) increases as \(u_{1}\) increases between 15 and 20 (so \(\Delta _{1}\) increases between 7 and 12).

  34. Formally, \(\frac{dv^{\bullet *}}{db}=0\), from Lemma 2.

  35. The slope of firm 2’s reaction function is \(\frac{\partial p_{2}}{\partial p_{1}}=\frac{b}{2}\). (See the proof of Lemma 1 in the Appendix).

  36. Technically, as b increases, firm 2’s reaction function becomes steeper and shifts downward in \((p_{1},p_{2})\)-space. An increase in \(w_{2}\) shifts the reaction function upward.

  37. Observe from Eq. (1) that \(\frac{\partial U(\cdot ) }{\partial x_{i}}=u_{i}-\frac{x_{i}\,+\,b\,x_{j}}{1\,+\,b}\,\Rightarrow \, \frac{\partial }{\partial b}\left( \frac{\partial U(\cdot )}{\partial x_{i}} \right) =\frac{x_{i}\,-\,x_{j}}{\left[ \,1\,+\,b\,\right] ^{2}}\). Therefore, an increase in b increases the representative consumer’s marginal valuation of the output of the more efficient supplier (which produces the most output) and reduces the consumer’s marginal valuation of the output of the less efficient supplier.

  38. Technically, the equilibrium shadow value of profit declines as b increases (Lemma 2).

  39. Recall that because \(p_{1}^{*}=w_{1}^{*}+c_{1}\), the regulator can only induce the public enterprise to lower its retail price by reducing \( w_{1}^{*}\).

  40. When its efficiency is sufficiently pronounced, the private firm (firm 2) sets \(p_{2}^{*}\) relatively far above cost. The regulator mitigates the resulting welfare reduction by reducing \(w_{2}^{*}\). To illustrate, it can be shown that when \(u_{1}=u_{2}=20\), \( c_{u}=5,\) \(c_{1}=c_{2}=2\), \( F=50 \), and \(\gamma =1\) (so \(\Delta _{1}=\Delta _{2}=13\)), \( w_{2}^{*}\) increases as b increases between 0.4 and 0.9. In contrast, when \(u_{1}=17\), \(u_{2}=23\), \(c_{u}=10,\) \(c_{1}=2\), \(c_{2}=1\), \(F=50\) , and \(\gamma =1\) (so \(\Delta _{2}=12>5=\Delta _{1}\)), \( w_{2}^{*}\) declines as b increases between 0.4 and 0.9.

  41. White (1996) provides a related “privatization neutrality” result. He finds that when linear output subsidies are set to maximize welfare, key industry outcomes are the same when all retail firms are private enterprises and when one of the firms is a public enterprise. White (1996) analyzes a setting in which each firm employs the same production technology to produce a homogeneous product, the firms engage in Cournot competition, subsidies entail no deadweight loss, and the public enterprise acts to maximize aggregate welfare. Lin and Matsumura (2018) show that “privatization neutrality” does not prevail when public and private firms employ different production technologies.

  42. The adjustments to access prices vary with the prevailing degree of product homogeneity (b). Smaller reductions in access prices are required to induce the desired retail prices when more intense competitive pressures induce the firms to hold their retail prices closer to marginal cost (i.e., when b is large).

  43. Cui and Sappington (2021) demonstrate that these qualitative conclusions persist as parameters in the benchmark setting vary.

  44. In contrast, as noted above, a profit-maximizing supplier of access often increases the price it charges for access as the buyer becomes more efficient.

  45. This finding calls into question the merits of providing infrastructure access on favorable terms to public entities that compete with private enterprises.

  46. A firm’s focus on consumer surplus versus profit might vary with the extent to which ownership shares in the firm are held by the government or by private investors, as in Matsumura (1998), for example.

  47. The following analysis outlines the key elements of the proof of Lemma 1. Cui and Sappington (2021) provide a complete, detailed proof of the lemma.

References

  • Armstrong, M. (1998). Network interconnection in telecommunications. Economic Journal, 108(448), 545–564.

    Article  Google Scholar 

  • Armstrong, M. (2002). The theory of access pricing and interconnection. In Martin Cave, Sumit Majumdar, & Ingo Vogelsang (Eds.), Handbook of telecommunications economics (pp. 295–384). Amsterdam: North-Holland Publishers.

    Google Scholar 

  • Armstrong, M., Cowan, S., & Vickers, J. (1994). Regulatory reform: Economic analysis and British experience (Vol. 20). Cambridge, MA: MIT Press.

    Google Scholar 

  • Armstrong, M., Doyle, C., & Vickers, J. (1996). The access pricing problem: a synthesis. Journal of Industrial Economics, 44(2), 131–150.

    Article  Google Scholar 

  • Armstrong, M., & Sappington, D. (2007). Recent developments in the theory of regulation. In Mark Armstrong & Robert Porter (Eds.), Handbook of industrial organization (Vol. 3, pp. 1557–1700). Amsterdam: North-Holland Publishers.

    Google Scholar 

  • Arya, A., & Mittendorf, B. (2010). Input price discrimination when buyers operate in multiple markets. Journal of Industrial Economics, 58(4), 846–867.

    Article  Google Scholar 

  • Bárcena-Ruiz, J., & Garzón, M. (2018). Privatisation and vertical integration under a mixed duopoly. Economic Systems, 42(3), 514–522.

    Article  Google Scholar 

  • Baumol, W. (1983). Some subtle pricing issues in railroad regulation. International Journal of Transport Economics,10(1–2), 341–355.

  • Baumol, W., Ordover, J., & Willig, R. (1997). Parity pricing and its critics: A necessary condition for efficiency in the provision of bottleneck services to competitors. Yale Journal on Regulation, 14(1), 145–164.

    Google Scholar 

  • Baumol, W., & Sidak, J. G. (1994). The pricing of inputs sold to competitors. Yale Journal on Regulation, 11(1), 171–202.

    Google Scholar 

  • Beato, P., & Mas-Colell, A. (1984). Marginal cost pricing rule as a regulation mechanism in mixed markets. In M. Marchand, P. Pestieau, & H. Tulkens (Eds.), The performance of public enterprises. Amsterdam: North-Holland.

    Google Scholar 

  • Besanko, D., & Cui, S. (2016). Railway restructuring and organizational choice: network quality and welfare impacts. Journal of Regulatory Economics, 50(2), 164–206.

    Article  Google Scholar 

  • Besanko, D., & Cui, S. (2019). Regulated versus negotiated access pricing in vertically separated railway systems. Journal of Regulatory Economics, 55(1), 1–32.

    Article  Google Scholar 

  • Bös, D. (1986). Public enterprise economics. Amsterdam: North-Holland.

    Google Scholar 

  • Brito, D., Tselekounis, M., & Vasconcelos, H. (2019). Input price discrimination in the presence of downstream vertical differentiation. Economics Letters, 184, 108622.

    Article  Google Scholar 

  • Connecticut State Office of Consumer Counsel. Pole attachments and the public rights of way. Visited February 16, 2021, from https://portal.ct.gov/OCC/Telecom/Broadband/Broadband/Pole-Attachments-and-the-Public-Rights-of-Way-PROW.

  • Corcoran, T. (2019). Populist bureaucrats are promising Canadians phoney competition on cell phone services. Financial Post. https://financialpost.com/opinion/terence-corcoran-populist-bureaucrats-are-promising-canadians-phoney-competition-on-cell-phone-services.

  • Cremer, H., Marchand, M., & Thisse, J. (1989). The public firm as an instrument for regulating an oligopolistic market. Oxford Economic Papers, 41(2), 283–301.

    Article  Google Scholar 

  • Cui, S., & Sappington, D. (2021). Technical appendix to accompany ‘Access pricing in network industries with mixed oligopoly’. https://people.clas.ufl.edu/sapping/appendices.

  • De Fraja, G., & Delbono, F. (1989). Alternative strategies of a public enterprise in oligopoly. Oxford Economic Papers, 41(2), 302–311.

    Article  Google Scholar 

  • DeGraba, P. (1990). Input market price discrimination and the choice of technology. American Economic Review, 80(5), 1246–1253.

    Google Scholar 

  • De Rus, G., & Socorro, M. P. (2014). Access pricing, infrastructure investment and intermodal competition. Transportation Research Part E: Logistics and Transportation Review, 70, 374–387.

    Article  Google Scholar 

  • Del Bo, C., Ferraris, M., & Florio, M. (2017). Governments in the market for corporate control: Evidence from M&A deals involving state-owned enterprises. Journal of Comparative Economics, 45(1), 89–109.

    Article  Google Scholar 

  • Edwards, G., & Waverman, L. (2006). The effects of public ownership and regulatory independence on regulatory outcomes. Journal of Regulatory Economics, 29(1), 23–67.

    Article  Google Scholar 

  • Harris, R., & Wiens, E. (1980). Government enterprise: an instrument for the internal regulation of industry. Canadian Journal of Economics, 13(1), 125–132.

    Article  Google Scholar 

  • Hauge, J., Jamison, M., & Jewell, R. (2009). A consideration of telecommunications market structure in the presence of municipal provision: The case of US cities. Review of Industrial Organization, 34(2), 135–152.

    Article  Google Scholar 

  • Inderst, R., & Shaffer, G. (2009a). Market power, price discrimination, and allocative efficiency in intermediate-goods markets. RAND Journal of Economics, 40(4), 658–672.

    Article  Google Scholar 

  • Inderst, R., & Valletti, T. (2009b). Price discrimination in input markets. RAND Journal of Economics, 40(1), 1–19.

    Article  Google Scholar 

  • Jullien, B., Pouyet, J., & Sand-Zantman, W. (2010). Public and private investments in regulated network industries: coordination and competition issues. Review of Network Economics, 9(4), 3.

    Article  Google Scholar 

  • Katz, M. L. (1987). The welfare effects of third-degree price discrimination in intermediate good markets. American Economic Review, 77(1), 154–167.

    Google Scholar 

  • Kowalski, P., Büge, M., Sztajerowska, M., & Egeland, M. (2013). State-owned enterprises: Trade effects and policy implications. OECD Trade Policy Papers (No. 147). Paris: OECD.

  • Laffont, J. J., Rey, P., & Tirole, J. (1998a). Network competition: I. Overview and nondiscriminatory pricing. RAND Journal of Economics, 29(1), 1–37.

  • Laffont, J. J., Rey, P., & Tirole, J. (1998b). Network competition: II. Price discrimination. RAND Journal of Economics, 29(1), 38–56.

  • Laffont, J. J., & Tirole, J. (1993). A theory of incentives in procurement and regulation. Cambridge, MA: MIT Press.

    Google Scholar 

  • Laffont, J. J., & Tirole, J. (1994). Access pricing and competition. European Economic Review, 38(9), 1673–1710.

    Article  Google Scholar 

  • Laffont, J. J., & Tirole, J. (2000). Competition in telecommunications. Cambridge, MA: MIT Press.

    Google Scholar 

  • Lin, M., & Matsumura, T. (2018). Optimal privatization and uniform subsidy policies: A note. Journal of Public Economic Theory, 20(3), 416–423.

    Article  Google Scholar 

  • Masmoudi, H., & Prothais, F. (1994). Access charges: An example of application of the fully efficient rule to mobile access to the fixed network. École Polytechnique and France Télécom discussion paper.

  • Matsumura, T. (1998). Partial privatization in mixed duopoly. Journal of Public Economics, 70(3), 473–483.

    Article  Google Scholar 

  • Matsumura, T., & Matsushima, N. (2004). Endogenous cost differentials between public and private enterprises: a mixed duopoly approach. Economica, 71(284), 671–688.

    Article  Google Scholar 

  • Miklós-Thal, J., & Shaffer, G. (2019). Input price discrimination by resale market. University of Rochester discussion paper.

  • Parris, H., Pestieau, P., & Saynor, P. (1987). Public enterprise in western Europe. London: Croom Helm.

    Google Scholar 

  • Sappington, D., & Unel, B. (2005). Privately-negotiated input prices. Journal of Regulatory Economics, 27(3), 263–280.

    Article  Google Scholar 

  • Simmons, K. (2018). The power to choose: Georgia’s customer choice program is encouraging economic development across the state. Georgia Trend. https://www.georgiatrend.com/2018/08/01/the-power-to-choose/.

  • Singh, N., & Vives, X. (1984). Price and quantity competition in a differentiated duopoly. RAND Journal of Economics, 15(4), 546–554.

    Article  Google Scholar 

  • U.S. Federal Communications Commission. (2021). Public, Educational, and Governmental Access Channels (“PEG Channels”).https://www.fcc.gov/media/public-educational-and-governmental-access-channels-peg-channels. Visited February 16, 2021.

  • Valletti, T. (2003). Input price discrimination with downstream Cournot competitors. International Journal of Industrial Organization, 21(7), 969–988.

    Article  Google Scholar 

  • Vogelsang, I. (2003). Price regulation of access to telecommunications networks. Journal of Economic Literature, 41(3), 830–862.

    Article  Google Scholar 

  • White, M. (1996). Mixed oligopoly, privatization and subsidization. Economics letters, 53(2), 189–195.

    Article  Google Scholar 

  • Willig, R. (1979). The theory of network access pricing. In Harry Trebing (Ed.), Issues in public utility regulation. East Lansing: Michigan State University Public Utilities Papers.

    Google Scholar 

  • Yoshida, Y. (2000). Third-degree price discrimination in input markets: output and welfare. American Economic Review, 90(1), 240–246.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. M. Sappington.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

We thank the editor, anonymous referees, Sanford Berg, Tom Hazlett, Mark Jamison, Ted Kury, Tim Tardiff, Dennis Weisman, and participants in Florida State University’s 2021 Workshop in Applied and Theoretical Economics for very helpful comments.

Appendix

Appendix

Proof of Lemma 1

Footnote 47

We first derive the demand functions for the products of the downstream suppliers. If downstream supplier \(i\in \{1,2\}\) seeks to maximize its profit plus the fraction \(\alpha _{i}\in \left[ \,0,1\,\right] \) of consumer surplus, the supplier’s problem, [Pi], is:

$$\begin{aligned} \underset{p_{i}}{Maximize} \left[ \,p_{i}-w_{i}-c_{i}\,\right] X_{i}({\mathbf {p}})+\alpha _{i}\,[\,U(X_{i}( {\mathbf {p}}),X_{j}({\mathbf {p}}))-\mathop {\sum }\limits _{i\,=\,1}^{2}p_{i}\,X_{i}( {\mathbf {p}})\,]\,\text {.} \end{aligned}$$

The necessary conditions for a solution to [Pi] are, for \( \,i,j\in \{1,2\}\) (\(j\ne i\)):

$$\begin{aligned}&X_{i}({\mathbf {p}})+\left[ \,p_{i}-w_{i}-c_{i}\,\right] \frac{ \partial X_{i}({\mathbf {p}})}{\partial p_{i}} \nonumber \\&\qquad +\,\,\alpha _{i}\left[ \,\frac{\partial U(X_{i}({\mathbf {p}} ),X_{j}({\mathbf {p}}))}{\partial p_{i}}-X_{i}({\mathbf {p}})-p_{i}\,\frac{X_{i}( \mathbf {p)}}{\partial p_{i}}-p_{j}\,\frac{X_{j}(\mathbf {p)}}{\partial p_{i}} \,\right] \,\,=0 \nonumber \\&\quad \Leftrightarrow \,\left[ \,1-\alpha _{i}\,\right] X_{i}({\mathbf {p}})+\left[ \,p_{i}-w_{i}-c_{i}\,\right] \frac{\partial X_{i}( {\mathbf {p}})}{\partial p_{i}}=0\, . \end{aligned}$$
(9)

The equivalence in (9) holds because consumer utility maximization ensures \(\,\frac{\partial U(\cdot )}{\partial X_{i}({\mathbf {p}})} =p_{i}\) for \(i\in \{1,2\}\). This equality and (1) imply that for \(\,i,j\in \{1,2\}\) (\(j\ne i\)):

$$\begin{aligned}&u_{i}-\frac{1}{1+b}\left[ \,x_{i}+b\,x_{j}\,\right] \,\,=p_{i}\Rightarrow \left[ \,1+b\,\right] \left[ \,u_{i}-p_{i}\,\right] \,\,=x_{i}+b\,x_{j} \nonumber \\&\quad \Rightarrow x_{i}=\left[ \,1+b\, \right] \left[ \,u_{i}-p_{i}\,\right] -b\left[ \,\left( \,1+b\,\right) \left( \,u_{j}-p_{j}\,\right) -b\,x_{i}\,\right] \nonumber \\&\quad \Rightarrow x_{i}\left[ \,1-b^{2}\,\right] \,\,=\,\,\left[ \,1+b\,\right] \left[ \,u_{i}-p_{i}\,\right] -b\left[ \,1+b\, \right] \left[ \,u_{j}-p_{j}\,\right] \nonumber \\&\quad \Rightarrow X_{i}({\mathbf {p}})= \frac{u_{i}-b\,u_{j}}{1-b}-\left[ \,\frac{1}{1-b}\,\right] p_{i}+\left[ \, \frac{b}{1-b}\,\right] p_{j}{. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \end{aligned}$$
(10)

We now specify equilibrium prices as a function of the established retail prices. (9) and (10) imply:

$$\begin{aligned}&\left[ \,1-\alpha _{i}\,\right] \left[ \,\frac{u_{i}-b\,u_{j}}{1-b}-\frac{ p_{i}}{1-b}+\frac{b\,p_{j}}{1-b}\,\right] +\,\left[ \,p_{i}-w_{i}-c_{i}\, \right] \left[ \,-\,\frac{1}{1-b}\,\right] \,=0 \nonumber \\&\quad \Rightarrow p_{i}=\frac{w_{i}+c_{i} }{2-\alpha _{i}}+\left[ \,\frac{1-\alpha _{i}}{2-\alpha _{i}}\,\right] \left[ \,u_{i}-b\,u_{j}\,\right] +\frac{b\left[ \,1-\alpha _{i}\,\right] }{2-\alpha _{i}}\,p_{j}{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \nonumber \\&\quad \Rightarrow p_{i}({\mathbf {w}})= \frac{1}{D\,}\,\{\,\left[ \,2-\alpha _{j}\,\right] \left[ \,w_{i}+c_{i}\, \right] +b\left[ \,1-\alpha _{i}\,\right] \left[ \,w_{j}+c_{j}\,\right] \nonumber \\&\qquad +\,\left[ \,1-\alpha _{i}\,\right] \left[ \,2-\alpha _{j}\,\right] \left[ \,u_{i}-b\,u_{j}\,\right] +b\left[ \,1-\alpha _{i}\,\right] \left[ \,1-\alpha _{j}\,\right] \left[ \,u_{j}-b\,u_{i}\,\right] \,\} \end{aligned}$$
(11)

where \(\,\mathbf {w\,\equiv }\,(w_{1},w_{2})\) and:

$$\begin{aligned} D\equiv \,\,\left[ \,2-\alpha _{i}\,\right] \left[ \,2-\alpha _{j}\, \right] -b^{2}\left[ \,1-\alpha _{i}\,\right] \left[ \,1-\alpha _{j}\,\right] \,\,>0\,. \end{aligned}$$
(12)

Equations (11) and (12) imply that when \(\,\alpha _{i}\,=\,\alpha _{j}\,=0\):

$$\begin{aligned} p_{i}^{0*}=w_{i}+c_{i}+\frac{1}{4-b^{2}}\left[ \,\left( 2-b^{2}\right) \left( \,u_{i}-w_{i}-c_{i}\,\right) -b\left( \,u_{j}-w_{j}-c_{j}\,\right) \,\right] \text {.} \end{aligned}$$
(13)

(11) and (12) imply that when \(\,\alpha _{1}\,=\,1\,\) and \(\,\alpha _{2}\,=\,0\):

$$\begin{aligned} p_{1}^{*}=\frac{1}{2\,}\,\{\,2\left[ \,w_{1}+c_{1}\, \right] \,\}=w_{1}+c_{1}\,\text {; and } \end{aligned}$$
(14)
$$\begin{aligned} p_{2}^{*}=\frac{1}{2}\left[ \,u_{2}+w_{2}+c_{2}-b\left( \,u_{1}-w_{1}-c_{1}\,\right) \right] {. \ } \ \ \ \ \ \end{aligned}$$
(15)

We now proceed to characterize optimal access prices. (10) and ( 11) imply:

$$\begin{aligned} X_{i}({\mathbf {w}})=\frac{u_{i}-b\,u_{j}}{1-b}-\left[ \,\frac{1 }{1-b}\,\right] p_{i}({\mathbf {w}})+\left[ \,\frac{b}{1-b}\,\right] p_{j}( {\mathbf {w}})\,\text {.} \end{aligned}$$
(16)

It is readily verified that industry profit, given access prices \({\mathbf {w}}\) is:

$$\begin{aligned} \Pi ({\mathbf {w}})=\,\,\left[ \,p_{1}({\mathbf {w}})-c_{u}-c_{1}\,\right] X_{1}({\mathbf {w}})+\left[ \,p_{2}({\mathbf {w}})-c_{u}-c_{2}\,\right] X_{2}( {\mathbf {w}})-F\,\text {.} \end{aligned}$$
(17)

Recall \(\lambda \) is the Lagrange multiplier associated with (4) and \(v=\gamma +\lambda \). (3), (4), and (17 ) imply that the necessary conditions for a solution to [RP] include, for \( i,j\in \{1,2\}\) (\(j\ne i\)):

$$\begin{aligned}&\frac{\partial U(X_{i}({\mathbf {w}}),X_{j}({\mathbf {w}}))}{\partial X_{i}( {\mathbf {w}})}\,\frac{\partial X_{i}({\mathbf {w}})}{\partial w_{i} }+\frac{\partial U(X_{i}({\mathbf {w}}),X_{j}({\mathbf {w}}))}{\partial X_{j}( {\mathbf {w}})}\,\frac{\partial X_{j}({\mathbf {w}})}{\partial w_{i} }\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \nonumber \\&\quad -\,\left[ \,p_{i}({\mathbf {w}})\,\frac{\partial X_{i}({\mathbf {w}} )}{\partial w_{i}}+\frac{\partial \,p_{i}({\mathbf {w}})}{\partial w_{i}} \,X_{i}({\mathbf {w}})+p_{j}({\mathbf {w}})\,\frac{\partial X_{j}({\mathbf {w}})}{ \partial w_{i}}+\frac{\partial p_{j}({\mathbf {w}})}{\partial w_{i}}\,X_{j}( {\mathbf {w}})\,\right] \ \ \ \ \ \ \ \nonumber \\&\quad +\,\,v\left[ \,\left( \,p_{i}({\mathbf {w}})-c_{u}-c_{i}\,\right) \,\frac{ \partial X_{i}({\mathbf {w}})}{\partial w_{i}}+\frac{\partial \,p_{i}({\mathbf {w}} )}{\partial w_{i}}\,X_{i}({\mathbf {w}})\right. \nonumber \\&\quad \left. +\,\left( \,p_{j}({\mathbf {w}})-c_{u}-c_{j}\,\right) \,\frac{\partial X_{j}({\mathbf {w}})}{ \partial w_{i}}+\frac{\partial p_{j}({\mathbf {w}})}{\partial w_{i}}\,X_{j}( {\mathbf {w}})\,\right] \nonumber \\&=\ v\left[ \,\left( \,p_{i}({\mathbf {w}})-c_{i}-c_{u}\,\right) \,\frac{\partial X_{i}({\mathbf {w}})}{\partial w_{i}}+\left( \,p_{j}({\mathbf {w}} )-c_{j}-c_{u}\,\right) \,\frac{\partial X_{j}({\mathbf {w}})}{\partial w_{i}}\, \right] \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \nonumber \\&\quad +\,\left[ \,v-1\,\right] \left[ \,\frac{\partial \,p_{i}( {\mathbf {w}})}{\partial w_{i}}\,X_{i}({\mathbf {w}})+\frac{ \partial p_{j}({\mathbf {w}})}{\partial w_{i}}\,X_{j}({\mathbf {w}} )\,\right] \,\,=0{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \end{aligned}$$
(18)

where, from (11) and (16):

$$\begin{aligned}&\frac{\partial p_{i}({\mathbf {w}})}{\partial w_{i}}\ =\ \frac{2-\alpha _{j}}{ D\,}\,\text {; }\frac{\partial p_{j}({\mathbf {w}})}{\partial w_{i}} =\frac{b\left[ \,1-\alpha _{j}\,\right] }{D}\,\text {;}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \nonumber \\&\frac{\partial X_{i}({\mathbf {w}})}{\partial w_{i}}\ =\frac{b^{2}\left[ \,1-\alpha _{j}\,\right] -\left[ \,2-\alpha _{j}\,\right] }{D\left[ \,1-b\, \right] }\,\text {;}\ \ \text {and }\frac{\partial X_{j}({\mathbf {w}})}{ \partial w_{i}}=\frac{b}{D\left[ \,1-b\,\right] \,}\,\text {.} \end{aligned}$$
(19)

Equations (10) and (19) imply that (18) can be written as:

$$\begin{aligned}&0=\frac{v}{D\left[ \,1-b\,\right] }\,\{\,\left[ \,p_{i}( {\mathbf {w}})-c_{i}-c_{u}\,\right] \left[ \,b^{2}\left( \,1-\alpha _{j}\,\right) \,-\,\left( \,2-\alpha _{j}\,\right) \,\right] +\,b\left[ \,p_{j}({\mathbf {w}})-c_{j}-c_{u}\,\right] \,\} \nonumber \\&\quad +\,\,\frac{\,v-1}{D}\left\{ \,\frac{\left[ \,2-\alpha _{j}\,\right] }{1-b} \left[ \,u_{i}-b\,u_{j}-p_{i}({\mathbf {w}})+b\,p_{j}({\mathbf {w}})\,\right] \right. \, \nonumber \\&\quad \left. +\,\,\frac{b\left[ \,1-\alpha _{j}\,\right] }{1-b} \left[ \,u_{j}-b\,u_{i}-p_{j}({\mathbf {w}})+b\,p_{i}({\mathbf {w}})\,\right] \,\right\} .\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \end{aligned}$$
(20)

Tedious calculations reveal that (11) and (20) imply the optimal prices are:

$$\begin{aligned} w_{i}= & {} \frac{T_{i}}{b^{2}\,\gamma _{1}\,\gamma _{3}-\gamma _{2}\,\gamma _{4}}\,\text { and }w_{j}=\frac{T_{j} }{b^{2}\,\gamma _{1}\,\gamma _{3}-\gamma _{2}\,\gamma _{4}}\text {, where} \end{aligned}$$
(21)
$$\begin{aligned} \gamma _{1}= & {} \left[ \,2\,v-1\,\right] \left\{ \,2-\alpha _{i}+\left[ \,b^{2}\left( \,1-\alpha _{j}\,\right) -\left( \,2-\alpha _{j}\,\right) \,\right] \left[ \,1-\alpha _{i}\,\right] \,\right\} , \nonumber \\ \gamma _{2}= & {} \left[ \,2\,v-1\,\right] \left\{ \,b^{2}\left[ \,1-\alpha _{j}\,\right] \left[ \,3-\alpha _{j}\,\right] - \left[ \,2-\alpha _{j}\,\right] ^{2}\,\right\} , \,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \nonumber \\ \gamma _{3}= & {} \left[ \,2\,v-1\,\right] \left\{ \,2-\alpha _{j}+\left[ \,b^{2}\left( \,1-\alpha _{i}\,\right) -\left( \,2-\alpha _{i}\,\right) \,\right] \left[ \,1-\alpha _{j}\,\right] \,\right\} , \nonumber \\ \gamma _{4}= & {} \left[ \,2\,v-1\,\right] \left\{ \,b^{2}\left[ \,1-\alpha _{i}\,\right] \left[ \,3-\alpha _{i}\,\right] - \left[ \,2-\alpha _{i}\,\right] ^{2}\,\right\} , \nonumber \\ T_{i}= & {} \left[ \,\gamma _{1}\,\theta _{i}-\gamma _{4}\,\right] v\,b\,D\,c_{j}+\left[ \,\gamma _{4}\,\gamma _{2}-\gamma _{4}\,v\,D\,\theta _{j}\,-\,\gamma _{1}\,b^{2}\,\gamma _{3}+\gamma _{1}\,b^{2}\,v\,D\,\right] c_{i}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \nonumber \\&-\,\,\left[ \,\gamma _{4}\left( \,\theta _{j}+b\,\right) -\gamma _{1}\,b\left( \,\theta _{i}+b\,\right) \,\right] v\,D\,c_{u}\,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \nonumber \\&+ \left\{ \,\left[ \,\gamma _{2}\,\gamma _{4}-b^{2}\,\gamma _{1}\,\gamma _{3}\,\right] \left[ \,1-\alpha _{i}\,\right] +\left[ \,\gamma _{4}\left( \,2-\alpha _{j}\,\right) -b^{2}\,\gamma _{1}\left( \,1-\alpha _{i}\,\right) \,\right] \left[ \,v-1\,\right] D\, \right\} \, \left[ \,u_{i}-b\,u_{j}\,\right] \nonumber \\&+\left[ \,\gamma _{4}\left( \,1-\alpha _{j}\,\right) -\gamma _{1}\left( \,2-\alpha _{i}\,\right) \,\right] \left[ \,v-1\,\right] D\,b\left[ \,u_{j}-b\,u_{i}\,\right] ,\ \ \text {and}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \nonumber \\ T_{j}= & {} \left[ \,\gamma _{3}\,\theta _{j}-\gamma _{2}\,\right] v\,b\,D\,c_{i}+\left[ \,\gamma _{4}\,\gamma _{2}-\gamma _{2}\,v\,D\,\theta _{i}\,-\,\gamma _{1}\,b^{2}\,\gamma _{3}+\gamma _{3}\,b^{2}\,v\,D\,\right] c_{j}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \nonumber \\&-\,\,\left[ \,\gamma _{2}\left( \,\theta _{i}+b\,\right) -\gamma _{3}\,b\left( \,\theta _{j}+b\,\right) \,\right] v\,D\,c_{u}\,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \nonumber \\&+ \left\{ \,\left[ \,\gamma _{2}\,\gamma _{4}-b^{2}\,\gamma _{1}\,\gamma _{3}\,\right] \left[ \,1-\alpha _{j}\,\right] +\left[ \,\gamma _{2}\left( \,2-\alpha _{i}\,\right) -b^{2}\,\gamma _{3}\left( \,1-\alpha _{j}\,\right) \,\right] \left[ \,v-1\,\right] D\, \right\} \, \left[ \,u_{j}-b\,u_{i}\,\right] \nonumber \\&+\left[ \,v-1\,\right] D\,b\left[ \,u_{i}-b\,u_{j}\, \right] \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \nonumber \\&\text {where }\theta _{i}=b^{2}\left[ \,1-\alpha _{i}\, \right] -\left[ \,2-\alpha _{i}\,\right] \text { and }\theta _{j} =b^{2}\left[ \,1-\alpha _{j}\,\right] -\left[ \,2-\alpha _{j}\,\right] . \end{aligned}$$
(22)

When firm 1 is a public enterprise (so \(\alpha _{1}\,=\,1\,\) and \(\,\alpha _{2}\,=\,0\)):

$$\begin{aligned}&\gamma _{1}=\gamma _{3}=\ 2\,v-1\,\text {;}\ \ \ \gamma _{2}=\,\,\left[ \,2\,v-1\,\right] \left[ \,3\,b^{2}-4\,\right] \text {;}\ \ \ \gamma _{4}=\,\,-\,\left[ \,2\,v-1\,\right] \text {;} \nonumber \\&\theta _{i}=\,\,-\,1\,\text {;}\ \ \theta _{j} =b^{2}-2\,\text {;}\ \ \text {and }\ D=2\, \text {.}\, \end{aligned}$$
(23)

Tedious calculations using (21), (22 ), and (23) reveal that when \(v=v^{*}\ne \frac{1}{2 }\):

$$\begin{aligned} w_{1}^{*}=c_{u}+\frac{v^{*}-1}{2\,v^{*}-1} \,\Delta _{1}\text { and }w_{2}^{*}=c_{u}-\frac{ \Delta _{2}-b\,v^{*}\,\Delta _{1}}{2\,v^{*}-1\,}\,\text {.} \end{aligned}$$
(24)

When firm 1 is a private firm (so \(\alpha _{1}\,=\,\alpha _{2}\,=\,0\)):

$$\begin{aligned} \gamma _{1}=\gamma _{3}=\,\,\left[ \,2\,v-1\,\right] b^{2}\ \text {;}\ \ \ \gamma _{2}=\gamma _{4}=\,\,\left[ \,2\,v-1\,\right] \left[ \,3\,b^{2}-4\,\right] \text {;} \nonumber \\ \theta _{i}=\,\theta _{j}=\,b^{2}-2\,\text {;} \ \ \text { and }\ D=4-b^{2}\,{. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \end{aligned}$$
(25)

Tedious calculations using (21), (22 ), and (25) reveal that when \(v=v^{0*}\ne \frac{1}{ 2}\):

$$\begin{aligned} w_{1}^{0*}=c_{u}-\frac{\Delta _{1}-b\,v^{0*}\,\Delta _{2}}{2\,v^{0*}-1\,}\text { and }w_{2}^{0*}=c_{u}- \frac{\Delta _{2}-b\,v^{0*}\,\Delta _{1}}{2\,v^{0*}-1\,}\,\text {.} \end{aligned}$$
(26)

Equations (13) and (26) imply that for \(i,j\in \{1,2\}\) (\(j\ne i \)):

$$\begin{aligned} p_{i}^{0*}= & {} w_{i}^{0*}+c_{i}+\frac{1}{ 4-b^{2}}\left[ \,\left( 2-b^{2}\right) \left( \,u_{i}-w_{i}^{0*}-c_{i}\,\right) -b\left( \,u_{j}-w_{j}^{0*}-c_{j}\,\right) \,\right] \nonumber \\= & {} c_{u}+c_{i}+\frac{\left[ \,v^{0*}-1\,\right] \Delta _{i}}{2\,v^{0*}-1}\,{. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \end{aligned}$$
(27)

Equations (14) and (24) imply:

$$\begin{aligned} p_{1}^{*}=w_{1}^{*}+c_{1}= c_{u}+c_{1}+\frac{\left[ \,v^{*}-1\,\right] \Delta _{1}}{ 2\,v^{*}-1}\,\text {.} \end{aligned}$$
(28)

Equations (15) and (24) imply:

$$\begin{aligned} p_{2}^{*}=\frac{1}{2}\left[ \,u_{2}+w_{2}^{*}+c_{2}-b\left( \,u_{1}-w_{1}^{*}-c_{1}\,\right) \,\right] \,\,= c_{u}+c_{2}+\frac{\left[ \,v^{*}-1\,\right] \Delta _{2}}{2\,v^{*}-1} \,\text {.} \end{aligned}$$
(29)

Equations (16) and (27) imply that for \(i,j\in \{1,2\}\) (\(i\ne j\)):

$$\begin{aligned} X_{i}^{0*}= & {} \frac{1}{1-b}\left[ \,u_{i}-b\,u_{j}-p_{i}^{0 *}+b\,p_{j}^{0*}\,\right] \,{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \nonumber \\= & {} \frac{1}{1-b}\left[ \,u_{i}-b\,u_{j}- \left( c_{u}+c_{i}+\frac{\left[ \,v^{0*}-1\,\right] \Delta _{i}}{ 2\,v^{0*}-1}\right) +b\left( c_{u}+c_{j}+\frac{\left[ \,v^{0*}-1\, \right] \Delta _{j}}{2\,v^{0*}-1}\right) \,\right] \nonumber \\= & {} \frac{1}{1-b}\left[ \,\Delta _{i}-\frac{\left[ \,v^{0*}-1\,\right] \Delta _{i}}{2\,v^{0*}-1}-b\,\Delta _{j}+b\, \frac{\left[ \,v^{0*}-1\,\right] \Delta _{j}}{2\,v^{0*}-1}\,\right] { \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \nonumber \\= & {} \frac{1}{\left[ \,1-b\,\right] \left[ \,2\,v^{0*}-1\,\right] }\left[ \,v^{0*}\,\Delta _{i}-b\,v^{0*}\,\Delta _{j}\, \right] \,\,=\frac{v^{0*}\left[ \,\Delta _{i}-b\,\Delta _{j}\, \right] }{\left[ \,1-b\,\right] \left[ \,2\,v^{0*}-1\,\right] }\,{. \ \ \ \ \ \ \ \ \ \ \ } \end{aligned}$$
(30)

Similarly, (16), (28), and (29) imply that for \(i,j\in \{1,2\}\) (\(i\ne j\)):

$$\begin{aligned} X_{i}^{*}=\frac{1}{1-b}\left[ \,u_{i}-b\,u_{j}-p_{i}^{*}+b\,p_{j}^{*}\,\right] = \frac{v^{*}\left[ \,\Delta _{i}-b\,\Delta _{j}\,\right] }{\left[ \,1-b\, \right] \left[ \,2\,v^{*}-1\,\right] }\, . \end{aligned}$$
(31)

Equations (17), (28), (29), and (31) imply that when firm 1 is a public enterprise, industry profit is:

$$\begin{aligned}&\Pi ({\mathbf {w}})= \,\,\left[ \,p_{1}^{*}-c_{u}-c_{1}\,\right] X_{1}^{*}+\left[ \,p_{2}^{*}-c_{u}-c_{2}\,\right] X_{2}^{*}-F \nonumber \\&\quad =\frac{\left[ \,v^{*}-1\,\right] \Delta _{1}}{ 2\,v^{*}-1}\,\frac{v^{*}\left[ \,\Delta _{1}-b\,\Delta _{2}\,\right] }{\left[ \,1-b\,\right] \left[ \,2\,v^{*}-1\,\right] }+\frac{\left[ \,v^{*}-1\,\right] \Delta _{2}}{2\,v^{*}-1}\,\frac{v^{*}\left[ \,\Delta _{2}-b\,\Delta _{1}\,\right] }{\left[ \,1-b\,\right] \left[ \,2\,v^{*}-1\,\right] }-F\, \nonumber \\&\quad =\ g(v^{*})\,H-F \end{aligned}$$
(32)
$$\begin{aligned}&\text {where }g(v)\ \equiv \ \frac{v\left[ \,v-1\,\right] }{\left[ \,1-b\, \right] \left[ \,2\,v-1\,\right] ^{2}} > reqless 0\ \ \Leftrightarrow \ \ v > reqless 1\, \end{aligned}$$
(33)
$$\begin{aligned}&\text {and }H\ \equiv \ \Delta _{1}\left[ \,\Delta _{1}\,-b\,\Delta _{2}\, \right] +\Delta _{2}\left[ \,\Delta _{2}-b\,\Delta _{1}\,\right] \,\,=\,\, \left[ \,\Delta _{1}\,\right] ^{2}-2\,b\,\Delta _{1}\,\Delta _{2}+\left[ \,\Delta _{2}\,\right] ^{2}\,>0\,\text {.} \qquad \end{aligned}$$
(34)

Corresponding calculations using (17), (27), and (30) imply that when firm 1 is a private firm, industry profit is \( g(v^{0*})\,H-F\).

Case (i). \(\,\gamma \,\in \,[\,0,1)\).

Suppose \(\lambda =0\) at the solution to [RP]. Then (4) and ( 33) imply that for \(v\in \{v^{*},v^{0*}\}\):

$$\begin{aligned} v=\gamma \,\in \,[\,0,1)\ \ \Rightarrow \ \ g(v)<0\ \ \Rightarrow \ \ \Pi ({\mathbf {w}}) <0\text {.} \end{aligned}$$
(35)

Equation (35) implies (4) is violated. Therefore, by contradiction, \(\lambda >0\), and so \(\Pi ({\mathbf {w}})=0\) by complementary slackness. Consequently, (32) implies:

$$\begin{aligned} g(v)=\frac{F}{H}\,\text {.} \end{aligned}$$
(36)

Case (ii). \(\,\gamma \,=\,1\).

If \(\,\Pi ({\mathbf {w}})>0\), then (4) implies that \(g(v)>\frac{F }{H}\ge 0\) for \(v\in \{v^{*},v^{0*}\}\). Therefore, \( v>1\) from (33). \(\lambda >0\) because \(\gamma =1\) and \(v=\gamma +\lambda >1\). Therefore, \(\Pi ({\mathbf {w}})=0\) by complementary slackness. This contradiction ensures \(\Pi ({\mathbf {w}})=0\), so (36) holds.

Equation (36) implies that if \(F=0\), then \(g(v)=\frac{F}{H}\,=0\), so \(v=1\), from (33). (36) also implies that if \(F>0\), then \(g(v)=\frac{F}{H}\,>0\), so \(v>1\), from (33). \(\square \)

Proof of Corollary 1

Equations (6) and ( 7) imply \(\,p_{1}^{*}\,=\,w_{1}^{*}+c_{1}\,\) and:

$$\begin{aligned}&p_{2}^{\bullet *}>w_{2}^{\bullet *}+c_{2}\Leftrightarrow c_{u}+c_{2}+\frac{\left[ \,v^{\bullet *}-1\,\right] \Delta _{2}}{2\,v^{\bullet *}-1}> c_{u}-\frac{\Delta _{2}-b\,v^{\bullet *}\,\Delta _{1}}{ 2\,v^{\bullet *}-1\,}+c_{2} \nonumber \\&\quad \Leftrightarrow \frac{\Delta _{2}-b\,v^{\bullet *}\,\Delta _{1}}{2\,v^{\bullet *}-1\, }+\frac{\left[ \,v^{\bullet *}-1\,\right] \Delta _{2}}{2\,v^{\bullet *}-1}>0\Leftrightarrow \Delta _{2} >b\,\Delta _{1}\,\text {.}\, \end{aligned}$$
(37)

The last inequality here reflects Assumption 1. \(\square \)

Proof of Corollary 2

\(v^{*}=v^{0*}=1\) when \(F=0\), from Lemma 1. Therefore, the Corollary follows immediately from (6), (7), and Assumption 1. \(\square \)

Proof of Lemma 2

Equation (33) implies that for \(v\in \{v^{*},v^{0*}\}\):

$$\begin{aligned} \frac{\partial g(v)}{\partial v}= & {} \frac{\left[ \,2\,v-1\, \right] ^{2}\left[ \,2\,v-1\,\right] -4\left[ \,v^{2}-v\,\right] \left[ \,2\,v-1\,\right] }{\left[ \,1-b\,\right] \left[ \,2\,v-1\,\right] ^{4}} =\frac{\left[ \,2\,v-1\,\right] ^{2}-4\left[ \,v^{2}-v\, \right] }{\left[ \,1-b\,\right] \left[ \,2\,v-1\,\right] ^{3}} \nonumber \\= & {} \frac{4\,v^{2}-4\,v+1-4\,v^{2}+4\,v}{\left[ \,1-b\, \right] \left[ \,2\,v-1\,\right] ^{3}}=\frac{1}{\left[ \,1-b\,\right] \left[ \,2\,v-1\,\right] ^{3}}>0\,\text {; and } \end{aligned}$$
(38)
$$\begin{aligned} \frac{\partial g(v)}{\partial b}= & {} \frac{v\left[ \,v-1\,\right] }{\left[ \,1-b\,\right] ^{2}\left[ \,2\,v-1\,\right] ^{2}}>0 \,\text {for }\,v\,>\,1\, . \end{aligned}$$
(39)

Equation (34) implies that for \(\,i,j\in \{1,2\}\) (\(j\ne i\)):

$$\begin{aligned}&\frac{\partial H}{\partial b}=\,\,-\,2\,\Delta _{i}\,\Delta _{j} <0\,\text {; }\frac{\partial H}{\partial F}= 0\, ; \end{aligned}$$
(40)
$$\begin{aligned}&\frac{\partial H}{\partial u_{i}}=2\left[ \Delta _{i}-b\,\Delta _{j}\,\right] \,\,>0\, ;\frac{ \partial H}{\partial c_{i}}=\,\,-\,\frac{\partial H}{\partial u_{i}}<0\,\text {; and } \nonumber \\&\frac{\partial H}{\partial c_{u}}=\,\,\Delta _{i} \left[ \,-\,1+b\,\right] -\left[ \,\Delta _{i}-b\,\Delta _{j}\,\right] +\Delta _{j}\left[ \,-\,1+b\,\right] -\left[ \,\Delta _{j}-b\,\Delta _{i}\, \right] \nonumber \\&\qquad \,\,\,=\,\,-\,2\left[ \,1-b\,\right] \left[ \,\Delta _{i}+\Delta _{j}\,\right] \,\,<0\, . \end{aligned}$$
(41)

Equations (36)–(40) imply:

$$\begin{aligned} \frac{\partial g(\cdot )}{\partial v}\,\,dv= \frac{1}{H}\,\,dF\Rightarrow \frac{dv}{dF}= \frac{1}{H\,\frac{\partial g(\cdot )}{\partial v}}> 0\,\text {. } \end{aligned}$$
(42)

Equations (36)–(40) also imply:

$$\begin{aligned}&\frac{\partial g(\cdot )}{\partial v}\,\,dv+\left[ \,\frac{\partial g(\cdot ) }{\partial b}+\frac{F}{H^{2}}\,\,\frac{\partial H}{\partial b}\,\right] db =0\Rightarrow \frac{dv}{db} =\,\,-\,\frac{\frac{\partial g(\cdot )}{\partial b}+\frac{F}{H^{2}}\,\,\frac{ \partial H}{\partial b}}{\frac{\partial g(\cdot )}{\partial v}} \nonumber \\&\quad \Rightarrow \frac{dv}{db}=\,\,-\,\left[ \,1-b\,\right] \left[ \,2\,v-1\,\right] ^{3}\left\{ \,\frac{v\left[ \,v-1\, \right] }{\left[ \,1-b\,\right] ^{2}\left[ \,2\,v-1\,\right] ^{2}}-2\,\, \frac{F}{H^{2}}\,\Delta _{1}\,\Delta _{2}\,\right\} \nonumber \\&\quad =\,\,-\,\left[ \,1-b\,\right] \left[ \,2\,v-1\,\right] ^{3}\left\{ \,\frac{v\left[ \,v-1\,\right] }{\left[ \,1-b\,\right] ^{2}\left[ \,2\,v-1\,\right] ^{2}}-\frac{2}{H}\,\,g_{1}(v)\,\Delta _{1}\,\Delta _{2}\,\right\} \nonumber \\&\quad =\,\,-\,\left[ \,1-b\,\right] \left[ \,2\,v-1\,\right] ^{3}\left\{ \,\frac{v\left[ \,v-1\,\right] }{\left[ \,1-b\, \right] ^{2}\left[ \,2\,v-1\,\right] ^{2}}-\frac{2}{H}\,\,\frac{v\left[ \,v-1\,\right] \Delta _{1}\,\Delta _{2}}{\left[ \,1-b\,\right] \left[ \,2\,v-1\,\right] ^{2}}\,\right\} \nonumber \\&\quad =\,\,-\,v\left[ \,v-1\,\right] \left[ \,2\,v-1\,\right] \left[ \,\frac{1}{ 1-b\,}-\frac{2}{H}\,\Delta _{1}\,\Delta _{2}\,\right] \text {.}\, \end{aligned}$$
(43)

Equation (34) implies:

$$\begin{aligned}&\frac{1}{1-b\,}-\frac{2}{H}\,\Delta _{1}\,\Delta _{2}=\frac{ H-2\left[ \,1-b\,\right] \Delta _{1}\,\Delta _{2}}{H\left[ \,1-b\,\right] } \nonumber \\&\quad =\frac{1}{H\left[ \,1-b\,\right] }\,\{\,\Delta _{1} \left[ \,\Delta _{1}\,-b\,\Delta _{2}\,\right] +\Delta _{2}\left[ \,\Delta _{2}\,-b\,\Delta _{1}\,\right] -\,\,2\left[ \,1-b\,\right] \Delta _{1}\,\Delta _{2}\,\} \nonumber \\&\quad =\frac{1}{H\left[ \,1-b\,\right] }\,\{\,\left[ \,\Delta _{1}\,\right] ^{2}+\left[ \,\Delta _{2}\,\right] ^{2}-2\,\Delta _{1}\,\Delta _{2}\,\}=\frac{\left[ \,\Delta _{1}-\Delta _{2}\,\right] ^{2}}{H\left[ \,1-b\,\right] }\,\text {. } \end{aligned}$$
(44)

Equations (43) and (44) imply:

$$\begin{aligned}&\frac{dv}{db}=\,\,-\,\frac{v\left[ \,v-1\,\right] \left[ \,2\,v-1\, \right] \left[ \,\Delta _{1}-\Delta _{2}\,\right] ^{2}}{H\left[ \,1-b\, \right] }\left\{ \begin{array}{c} =0\text { if }\,v\,=\,1\,\text { or }\,\Delta _{1}\,=\,\Delta _{2} \\ <0\text { if }\,v\,>\,1\,\text { and }\,\Delta _{1}\,\ne \,\Delta _{2}\,\text {.} \end{array} \right. \end{aligned}$$
(45)

Equations (36) and (38) imply that for \(x\in \{\,u_{i},\,u_{j},\,c_{i},\,c_{j},c_{u}\,\}\):

$$\begin{aligned} \frac{\partial g(\cdot )}{\partial v}\,\,dv+\frac{F}{H^{2}}\,\,\frac{ \partial H}{\partial x}\,\,dx=0\Rightarrow \frac{dv}{dx}=\,\,-\,\frac{\frac{F}{H^{2}}\,\,\frac{\partial H}{ \partial x}}{\frac{\partial g(\cdot )}{\partial v}}=\frac{F}{ H^{2}\,\frac{\partial g(\cdot )}{\partial v}}\,\left[ \,-\,\frac{\partial H}{ \partial x}\,\right] \text {.} \qquad \end{aligned}$$
(46)

Equations (33), (36), and (38) imply:

$$\begin{aligned}&\frac{F}{H^{2}\,\frac{\partial g(\cdot )}{\partial v}}=\frac{ F}{H}\,\,\frac{1}{H\,\frac{\partial g(\cdot )}{\partial v}}= g(v)\,\,\frac{\left[ \,1-b\,\right] \left[ \,2\,v-1\,\right] ^{3}}{H} \nonumber \\&\quad =\frac{v\left[ \,v-1\,\right] }{\left[ \,1-b\,\right] \left[ \,2\,v-1\,\right] ^{2}}\,\,\frac{\left[ \,1-b\,\right] \left[ \,2\,v-1\,\right] ^{3}}{H}=\frac{1}{H}\,v\left[ \,v-1\,\right] \left[ \,2\,v-1\,\right] \text {.} \qquad \end{aligned}$$
(47)

Equations (46) and (47) imply that for \(x\in \{\,u_{i},\,u_{j},\,c_{i},\,c_{j},c_{u}\,\}\):

$$\begin{aligned} \frac{dv}{dx}=\frac{1}{H}\,v\left[ \,v-1\,\right] \left[ \,2\,v-1\,\right] \left[ \,-\,\frac{\partial H}{\partial x}\,\right] \,\, \overset{s}{=}\,\,-\,\frac{\partial H}{\partial x}\text { if }v >1\,\text {.} \end{aligned}$$
(48)

The observations in the Lemma follow directly from (40) to (42), (45), and (48). \(\square \)

Proof of Corollary 3

Lemma 1 implies that \(v>1\) when \(F>0\), for \(v\in \{v^{*},v^{0*}\}\). Therefore, (7) implies \(p_{1}^{\bullet *}>c_{u}+c_{1} \) and \(p_{2}^{\bullet *}> c_{u}+c_{2}\).

Equation (6) implies that for \(\,i,j\in \{1,2\}\) (\(j\ne i\)):

$$\begin{aligned} \frac{\partial w_{i}^{0*}}{\partial v^{0*}}=b\, \Delta _{j}\,\frac{2\,v^{0*}-1-2\,v^{0*}}{\left[ \,2\,v^{0*}-1\,\right] ^{2}}+\frac{2\,\Delta _{i}\,}{\left[ \,2\,v^{0*}-1\,\right] ^{2}}=\frac{2\,\Delta _{i}\,-b\,\Delta _{j}}{\left[ \,2\,v^{0*}-1\,\right] ^{2}}>0\,\text {.} \end{aligned}$$
(49)

The inequality in (49) reflects Assumption 1. (42) and (49) imply:

$$\begin{aligned} \frac{dw_{i}^{0*}}{dF}=\frac{\partial w_{i}^{0*}}{ \partial F}+\frac{\partial w_{i}^{0*}}{\partial v^{0*}}\,\,\frac{ \partial v^{0*}}{\partial F}=\frac{\partial w_{i}^{0*}}{\partial v^{0*}}\,\,\frac{\partial v^{0*}}{\partial F}> 0\,\text {.} \end{aligned}$$
(50)

Equations (6), (41), (48), and (49) imply:

$$\begin{aligned}&\frac{dw_{i}^{0*}}{dc_{u}}=\frac{\partial w_{i}^{0*} }{\partial c_{u}}+\frac{\partial w_{i}^{0*}}{\partial v^{0*}}\,\, \frac{\partial v^{0*}}{\partial c_{u}} \nonumber \\&\quad =1+\frac{1-b\,v^{0*}}{2\,v^{0*}-1}+\,\frac{ 2\,\Delta _{i}\,-b\,\Delta _{j}}{\left[ \,2\,v^{0*}-1\,\right] ^{2}}\,\, \frac{2}{H}\,v^{0*}\left[ \,v^{0*}-1\,\right] \left[ \,2\,v^{0*}-1\,\right] \left[ \,1-b\,\right] \left[ \,\Delta _{i}\,+\,\Delta _{j}\, \right] \nonumber \\&\quad =\frac{v^{0*}\left[ \,2-b\,\right] }{2\,v^{0*}-1}+\frac{2\,\Delta _{i}\,-b\,\Delta _{j}}{\left[ \,2\,v^{0*}-1\,\right] ^{2}}\,\,\frac{2}{H}\,\,v^{0*}\left[ \,v^{0*}-1\,\right] \left[ \,2\,v^{0*}-1\,\right] \left[ \,1-b\,\right] \left[ \,\Delta _{i}\,+\,\Delta _{j}\,\right] \,\,>0\,\text {.}\nonumber \\ \end{aligned}$$
(51)

Equations (8) and (42) imply:

$$\begin{aligned} \frac{dX_{i}^{0*}}{dF}=\frac{\partial X_{i}^{0*}}{\partial v^{0*}}\,\,\frac{\partial v^{0*}}{\partial F }\overset{s}{=}\frac{2\,v^{0*}-1-2\,v^{0*}}{\left[ \,2\,v^{0*}-1\,\right] ^{2}}=\,\,-\,\frac{1}{\left[ \,2\,v^{0*}-1\,\right] ^{2}}<0\,\text {.} \end{aligned}$$

Equations (8) and (48) imply:

$$\begin{aligned}&\frac{dX_{i}^{0*}}{dc_{u}}=\frac{\partial X_{i}^{0*} }{\partial c_{u}}+\frac{\partial X_{i}^{0*}}{\partial v^{0*}}\,\, \frac{\partial v^{0*}}{\partial c_{u}}=\,\,-\,\frac{v^{0*}}{ 2\,v^{0*}-1\,}+\frac{\partial X_{i}^{0*}}{\partial v^{0*}}\,\, \frac{\partial v^{0*}}{\partial c_{u}}<\frac{\partial X_{i}^{0*}}{\partial v^{0*}}\,\,\frac{\partial v^{0*}}{\partial c_{u}} \nonumber \\&\overset{s}{=}\frac{2\,v^{0*}-1-2\,v^{0*}}{\left[ \,2\,v^{0*}-1\,\right] ^{2}}\,\left[ \,-\, \frac{\partial H}{\partial c_{u}}\,\right] \,\,\overset{s}{=}\,\,-\,\frac{1}{ \left[ \,2\,v^{0*}-1\,\right] ^{2}}<0\,\text {.} \end{aligned}$$
(52)

The last \(\,\overset{s}{=}\,\) in (52) reflects (41).

Equations (7) and (42) imply:

$$\begin{aligned} \frac{dp_{i}^{0*}}{dF}=\frac{\partial p_{i}^{0*}}{ \partial v^{0*}}\,\,\frac{\partial v^{0*}}{\partial F} \overset{s}{=}\frac{\partial p_{i}^{0*}}{\partial v^{0*}} \overset{s}{=}\frac{2\,v^{0*}-1-2\left[ \,v^{0*}-1\, \right] }{\left[ \,2\,v^{0*}-1\,\right] ^{2}}=\frac{1}{ \left[ \,2\,v^{0*}-1\,\right] ^{2}}>0\,\text {.} \end{aligned}$$
(53)

Equations (7), (41), (48), and (53) imply:

$$\begin{aligned}&\frac{dp_{i}^{0*}}{dc_{u}}=1-\frac{v^{0*}-1}{ 2\,v^{0*}-1}+\frac{\partial p_{i}^{0*}}{\partial v^{0*}}\,\, \frac{\partial v^{0*}}{\partial c_{u}}=\frac{v^{0*}}{ 2\,v^{0*}-1}+\frac{\partial p_{i}^{0*}}{\partial v^{0*}}\,\, \frac{\partial v^{0*}}{\partial c_{u}} \\&\quad>\frac{\partial p_{i}^{0*}}{\partial v^{0*}} \,\,\frac{\partial v^{0*}}{\partial c_{u}}\overset{s}{=} \frac{\partial p_{i}^{0*}}{\partial v^{0*}}\,\left[ \,-\,\frac{ \partial H}{\partial c_{u}}\,\right] \,\,\overset{s}{=}\frac{ \partial p_{i}^{0*}}{\partial v^{0*}}>0\, . \end{aligned}$$

The calculations for the public enterprise are analogous, and so are omitted. \(\square \)

Proof of Proposition 1

Equation (6) implies:

$$\begin{aligned}&w_{2}^{*}<w_{1}^{*} \Leftrightarrow c_{u}-\frac{\Delta _{2}-b\,v^{*}\,\Delta _{1}}{ 2\,v^{*}-1\,}<\,c_{u}+\frac{\left[ \,v^{*}-1\,\right] \Delta _{1}}{2\,v^{*}-1} \nonumber \\&\quad \Leftrightarrow \Delta _{2}>\,\,\left[ \,1-v^{*}\left( 1-b\,\right) \,\right] \Delta _{1}\,\text { . } \end{aligned}$$
(54)

The last inequality in (54) holds if \(\,1-v^{*}\left[ \,1\,-\,b\,\right] \,\le \,0\). The inequality also holds if \(\,1-v^{*} \left[ \,1\,-\,b\,\right] \,>\,0\,\) and \(\,\Delta _{1}\,<\,\frac{\Delta _{2} }{1\,-\,v^{*}\left[ \,1\,-\,b\,\right] }\,\).

Equation (6) also implies:

$$\begin{aligned} w_{1}^{0*}\lesseqgtr w_{2}^{0*} \Leftrightarrow \Delta _{2}-b\,v^{0*}\,\Delta _{1} \lesseqgtr \Delta _{1}-b\,v^{0*}\,\Delta _{2} \\ \Leftrightarrow \,\left[ \,1+b\,v^{0*}\,\right] \Delta _{2}\lesseqgtr \,\,\left[ \,1+b\,v^{0*}\,\right] \Delta _{1}\Leftrightarrow \Delta _{1} > reqless \Delta _{2}\,\text {. } \end{aligned}$$

\(\square \)

Proof of Proposition 2

\(\Pi ({\mathbf {w}} )=0\), from Lemma 1. Therefore, (17) implies \( g(\cdot )=\frac{F}{H}\). (33) implies \(\frac{\partial g(\cdot )}{ \partial \Delta _{i}}=0\) for \(i\in \{1,2\}\). Therefore, (34), (38), and (47) imply that for \(\,i,j\in \{1,2\}\) (\(j\ne i\) ):

$$\begin{aligned}&\frac{dv^{\bullet *}}{d\Delta _{i}}=\,\,-\,\frac{ \frac{F}{H^{2}}\,\frac{\partial H}{\partial \Delta _{i}}}{\frac{\partial g(\cdot )}{\partial v}}=\,\,-\,\frac{1}{H}\,v^{\bullet *}\left[ \,v^{\bullet *}-1\,\right] \left[ \,2\,v^{\bullet *}-1\,\right] \, \frac{\partial H}{\partial \Delta _{i}} \nonumber \\&\qquad \,\,\,\,\,=\,\,-\,\frac{2}{H}\,v^{\bullet *}\left[ \,v^{\bullet *}-1\,\right] \left[ \,2\,v^{\bullet *}-1\,\right] \left[ \,\Delta _{i}-b\,\Delta _{j}\,\right] \,\,<0\,\text {.} \end{aligned}$$
(55)

Equation (6) implies:

$$\begin{aligned} \frac{dw_{2}^{\bullet *}}{d\Delta _{2}}=\frac{\partial w_{2}^{\bullet *}}{\partial \Delta _{2}}+\frac{\partial w_{2}^{\bullet *}}{\partial v^{\bullet *}}\,\,\frac{\partial v^{\bullet *}}{ \partial \Delta _{2}}=\,\,-\,\frac{1}{2\,v^{\bullet *}-1}+\frac{ \partial w_{2}^{\bullet *}}{\partial v^{\bullet *}}\,\,\frac{ \partial v^{\bullet *}}{\partial \Delta _{2}}<0\, . \end{aligned}$$
(56)

The inequality in (56) holds because \(\frac{\partial v^{\bullet *}}{\partial \Delta _{2}}<0\) from (55) and \( \frac{\partial w_{2}^{\bullet *}}{\partial v^{\bullet *}}>0\) from ( 6) and (49).

Equation (6) implies:

$$\begin{aligned} \frac{dw_{1}^{*}}{d\Delta _{2}}=\frac{ \partial w_{1}^{*}}{\partial \Delta _{2}}+\frac{\partial w_{1}^{*}}{ \partial v^{*}}\,\,\frac{\partial v^{*}}{\partial \Delta _{2}}=\frac{\partial w_{1}^{*}}{\partial v^{*}}\,\,\frac{ \partial v^{*}}{\partial \Delta _{2}}<0\, . \end{aligned}$$
(57)

The inequality in (57) holds because: (i) \(\frac{\partial v }{\partial \Delta _{2}}<0\) from (55); and (ii) from (6):

$$\begin{aligned} \frac{\partial w_{1}^{*}}{\partial v^{*}}\overset{s}{=}\,\, \left[ \,2\,v^{*}-1\,\right] \Delta _{1}-2\left[ \,v^{*}-1\,\right] \Delta _{1}\,\,=\Delta _{1}>0\,\text {.}\, \end{aligned}$$

Equation (6) implies that for \(\,i,j\in \{1,2\}\) (\(j\ne i\)):

$$\begin{aligned}&\frac{\partial w_{i}^{0*}}{\partial v^{0*}}=\,\,-\,\frac{-\,b\,\Delta _{j}\left[ \,2\,v^{0*}-1\, \right] -2\left[ \,\Delta _{i}-b\,v^{0*}\,\Delta _{j}\,\right] }{\left[ \,2\,v^{0*}-1\,\right] ^{2}}=\frac{2\,\Delta _{i}-b\,\Delta _{j}\,}{\left[ \,2\,v^{0*}-1\,\right] ^{2}}>0 \end{aligned}$$
(58)
$$\begin{aligned}&\Rightarrow \frac{dw_{1}^{0*}}{d\Delta _{2}} =\frac{\partial w_{1}^{0*}}{\partial \Delta _{2}}+\frac{ \partial w_{1}^{0*}}{\partial v^{0*}}\,\,\frac{\partial v^{0*}}{ \partial \Delta _{2}} \nonumber \\&\quad =\frac{b\,v^{0*}}{2\,v^{0*}-1}+\frac{ 2\,\Delta _{1}-b\,\Delta _{2}}{\left[ \,2\,v^{0*}-1\,\right] ^{2}} \left\{ \,-\,\frac{2}{H}\,v^{0*}\left[ \,v^{0*}-1\, \right] \left[ \,2\,v^{0*}-1\,\right] \left[ \,\Delta _{2}-b\,\Delta _{1}\,\right] \,\right\} \text {.} \end{aligned}$$
(59)

The last equality in (59) reflects (55). (59) implies that \(\frac{dw_{1}^{0*}}{ d\Delta _{2}}<0\) for b sufficiently close to 0. \(\square \)

Proof of Proposition 3

Equation (6) implies:

$$\begin{aligned} \frac{\partial w_{1}^{*}}{\partial \Delta _{1}}=\frac{ v^{*}-1}{2\,v^{*}-1}\text { and }\frac{\partial w_{1}^{*}}{ \partial v^{*}}=\Delta _{1}\left[ \,\frac{2\,v^{*}-1-2\left( \,v^{*}-1\,\right) \,}{\left( \,2\,v^{*}-1\,\right) ^{2}} \,\right] \,\,=\frac{\Delta _{1}}{\left[ \,2\,v^{*}-1\,\right] ^{2}}\,\text {.} \nonumber \\ \end{aligned}$$
(60)

Equations (55) and (60) imply:

$$\begin{aligned}&\frac{dw_{1}^{*}}{d\Delta _{1}}=\frac{\partial w_{1}^{*}}{\partial \Delta _{1}}+\frac{\partial w_{1}^{*}}{\partial v^{*}}\,\,\frac{\partial v^{*}}{\partial \Delta _{1}} \nonumber \\&\quad =\frac{v^{*}-1}{2\,v^{*}-1}-\frac{ \Delta _{1}}{\left[ \,2\,v^{*}-1\,\right] ^{2}}\,\,\frac{2}{H} \,\,v^{*}\left[ \,v^{*}-1\,\right] \left[ \,2\,v^{*}-1\,\right] \left[ \,\Delta _{1}-b\,\Delta _{2}\,\right] \nonumber \\&\quad =\frac{\left[ \,v^{*}-1\,\right] G_{1}(v^{*})}{H\left[ \,2\,v^{*}-1\,\right] } \end{aligned}$$
(61)

where

$$\begin{aligned}&G_{1}(v)\equiv H-2\,v\,\Delta _{1}\left[ \,\Delta _{1}\,-b\,\Delta _{2}\,\right] \,\,=\,\,\left[ \,\Delta _{1}\, \right] ^{2}+\left[ \,\Delta _{2}\,\right] ^{2}-2\,b\,\Delta _{1}\,\Delta _{2}-2\,v\,\Delta _{1}\left[ \,\Delta _{1}-b\,\Delta _{2}\,\right] \nonumber \\&\quad =\,\,-\,\left[ \,2\,v-1\,\right] \left[ \,\Delta _{1}\,\right] ^{2}+\left[ \,\Delta _{2}\,\right] ^{2}+2\,b\left[ \,v-1\,\right] \Delta _{1}\,\Delta _{2}\, . \end{aligned}$$
(62)

The first equality in (62) reflects (34). ( 62) implies that when \(\Delta _{1}\ge \Delta _{2}\) and \(v>1\):

$$\begin{aligned}&G_{1}(v)\le \,\,\left[ \,\Delta _{1}\,\right] ^{2}\left[ \,1-\left( \,2\,v-1\,\right) +2\,b\left( \,v-1\,\right) \,\right] \nonumber \\&\overset{s}{=}\,\,2-\,2\,v+2\,b\left[ \,v-1\,\right] \,\,=\,\,-\,2\left[ \,v-1\,\right] +2\,b\left[ \,v-1\,\right] \,\,=\,\,-\,2 \left[ \,1-b\,\right] \left[ \,v-1\,\right] \text {.} \end{aligned}$$
(63)

Equations (61) and (63) imply that when \(v^{*}>1\):

$$\begin{aligned} \frac{dw_{1}^{*}}{d\Delta _{1}}<0\text { if }\,\Delta _{1}\,\ge \,\Delta _{2}\,\text {.} \end{aligned}$$
(64)

Equation (62) implies:

$$\begin{aligned}&G_{1}(v)=\Delta _{1}^{2}\,+\,\Delta _{2}^{2}\,-\,b\,\Delta _{1}\,\Delta _{2}\,-\,b\,\Delta _{1}\,\Delta _{2}\,-\,2\,v\,\Delta _{1}\left[ \,\Delta _{1}-b\,\Delta _{2}\,\right] \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \nonumber \\&\quad =\Delta _{1}\left[ \,\Delta _{1}-b\,\Delta _{2}\, \right] \,+\,\Delta _{2}\left[ \,\Delta _{2}-b\,\Delta _{1}\,\right] \,-\,2\,v\,\Delta _{1}\left[ \,\Delta _{1}-b\,\Delta _{2}\,\right] \ \ \ \ \ \ \ \ \nonumber \\&\quad =-\,\left[ \,2\,v-1\,\right] \Delta _{1}\left[ \,\Delta _{1}-b\,\Delta _{2}\,\right] \,+\,\Delta _{2}\left[ \,\Delta _{2}-b\,\Delta _{1}\,\right] \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \nonumber \\&\quad >-\,\left[ \,2\,v-1\,\right] \Delta _{1}\left[ \,\Delta _{1}-b\,\Delta _{2}\,\right] \,+\,b\,\Delta _{1}\left[ \,\Delta _{2}-b\,\Delta _{1}\,\right] \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \nonumber \\&\quad =\left[ \,b\left( \,\Delta _{2}-b\,\Delta _{1}\,\right) \,-\,\left( \,2\,v-1\,\right) \left( \,\Delta _{1}-b\,\Delta _{2}\,\right) \,\right] \Delta _{1}\,\text {.}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \end{aligned}$$
(65)

Observe that:

$$\begin{aligned}&b\left[ \,\Delta _{2}-b\,\Delta _{1}\,\right] \,>\,\left[ \,2\,v-1\,\right] \left[ \,\Delta _{1}-b\,\Delta _{2}\,\right] \Leftrightarrow b\,\Delta _{2}-b^{2}\,\Delta _{1}>\,\left[ \,2\,v-1\,\right] \Delta _{1}-b\left[ \,2\,v-1\,\right] \Delta _{2} \nonumber \\&\quad \Leftrightarrow 2\,v\,b\,\Delta _{2}>\,\, \left[ \,2\,v-1+b^{2}\,\right] \Delta _{1}\ \ \Leftrightarrow \ \ \Delta _{2} >\,\left[ \,\frac{2\,v-1+b^{2}}{2\,v\,b}\,\right] \Delta _{1}\,\text { .}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \end{aligned}$$
(66)

Also observe that

$$\begin{aligned}&\frac{2\,v-1+b^{2}}{2\,v\,b}\,>\,b\text { when }v\,>\,1 \nonumber \\&\text {because }\frac{2\,v-1+b^{2}}{2\,v\,b}>b \Leftrightarrow 2\,v-1+b^{2}>2\,v\,b^{2} \nonumber \\&\Leftrightarrow 2\,v-1>b^{2}\left[ \,2\,v-1\,\right] \Leftrightarrow 1\,>\,b^{2}\,\text {.}\, \end{aligned}$$
(67)

Equations (61), (65), (66), (67), and Assumption 1 ensure that when \(v^{*}>1\), \(\,\frac{ dw_{1}^{*}}{d\Delta _{1}}>0\) under the condition specified in the Proposition. \(\square \)

Proof of Proposition 4

Equations (6) and (45) imply:

$$\begin{aligned} \frac{dw_{1}^{*}}{db}=\frac{\partial w_{1}^{*}}{ \partial b}+\frac{\partial w_{1}^{*}}{\partial v^{*}}\,\,\frac{ \partial v^{*}}{\partial b}=\frac{\partial w_{1}^{*} }{\partial v^{*}}\,\,\frac{\partial v^{*}}{\partial b}=0\text { if }\,\Delta _{1}\,=\,\Delta _{2}\text {.} \end{aligned}$$
(68)

Equations (6) and (45) imply that if \(\,\Delta _{1}\,=\,\Delta _{2}\) , then:

$$\begin{aligned} \frac{dw_{2}^{\bullet *}}{db}=\frac{\partial w_{2}^{\bullet *}}{\partial b}+\frac{\partial w_{2}^{\bullet *}}{ \partial v^{\bullet *}}\,\,\frac{\partial v^{\bullet *}}{\partial b} =\frac{\partial w_{2}^{\bullet *}}{\partial b}= \frac{v^{\bullet *}\,\Delta _{1}\,}{2\,v^{\bullet *}-1}>0\, . \end{aligned}$$
(69)

Equations (7) and (45) imply that for \(i\in \{1,2\}\):

$$\begin{aligned} \frac{dp_{i}^{\bullet *}}{db}=\frac{\partial p_{i}^{\bullet *}}{\partial b}+\frac{\partial p_{i}^{\bullet *}}{ \partial v^{\bullet *}}\,\,\frac{dv^{\bullet *}}{db}= \frac{\partial p_{i}^{\bullet *}}{\partial v^{\bullet *}}\,\,\frac{ dv^{\bullet *}}{db}=0\text { if }\,\Delta _{1}\,=\,\Delta _{2}\,\text {.} \end{aligned}$$

Equation (8) implies that for \(i,j\in \{1,2\}\) (\(j\ne i\)):

$$\begin{aligned} \frac{\partial X_{i}^{\bullet *}}{\partial b}=\,\,\left[ \frac{ v^{\bullet *}}{2\,v^{\bullet *}-1}\right] \frac{\left[ \,1-b\,\right] \left[ \,-\Delta _{j}\,\right] +\Delta _{i}-b\,\Delta _{j}}{\left[ \,1-b\, \right] ^{2}}=\frac{v^{\bullet *}\left[ \,\Delta _{i}-\Delta _{j}\,\right] }{\left[ \,2\,v^{\bullet *}-1\,\right] \left[ \,1-b\,\right] ^{2}}\,\text {.} \end{aligned}$$
(70)

Equations (8), (45), and (70) imply that if \(\Delta _{1}=\Delta _{2}\), then for \(i\in \{1,2\}\):

$$\begin{aligned} \frac{dX_{i}^{\bullet *}}{db}=\frac{\partial X_{i}^{0*}}{\partial b}+\frac{\partial X_{i}^{0*}}{\partial v^{0*}}\,\,\frac{dv^{0*}}{db}=0\, . \end{aligned}$$

\(\square \)

Proof of Proposition 5

Equations (45), (60), and (68) imply:

$$\begin{aligned} \frac{dw_{1}^{*}}{db}=\frac{\Delta _{1}}{ \left[ \,2\,v^{*}-1\,\right] ^{2}}\,\,\frac{\partial v^{*}}{\partial b}<0\text { if }\,\Delta _{1}\,\ne \,\Delta _{2}\,\text {.} \end{aligned}$$

Equations (6), (45), and (58) imply:

$$\begin{aligned}&\frac{dw_{2}^{\bullet *}}{db}=\frac{ \partial w_{2}^{\bullet *}}{\partial b}+\frac{\partial w_{2}^{\bullet *}}{\partial v^{\bullet *}}\,\,\frac{\partial v^{\bullet *}}{ \partial b} \nonumber \\&\quad =\frac{v^{\bullet *}\,\Delta _{1}}{2\,v^{\bullet *}-1\,}-\,\frac{2\,\Delta _{2}\,-b\,\Delta _{1}}{\left[ \,2\,v^{\bullet *}-1\,\right] ^{2}}\,\,\frac{v^{\bullet *}\left[ \,v^{\bullet *}-1\,\right] \left[ \,2\,v^{\bullet *}-1\,\right] \left[ \,\Delta _{2}-\Delta _{1}\,\right] ^{2}}{H\left[ \,1-b\,\right] } \nonumber \\&\quad =\frac{v^{\bullet *}\,G_{b}}{\left[ \,2\,v^{\bullet *}-1\,\right] \left[ \,1-b\,\right] H\,}\overset{ s}{=} G_{b}(v^{\bullet *}) \end{aligned}$$
(71)
$$\begin{aligned}&\text {where }G_{b}(v)\equiv \,\,\Delta _{1}\left[ \,1-b\,\right] H-\left[ \,v-1\,\right] \left[ \,2\,\Delta _{2}\,-b\,\Delta _{1}\,\right] \left[ \,\Delta _{2}-\Delta _{1}\,\right] ^{2}. \end{aligned}$$
(72)

Equations (34) and (72) imply:

$$\begin{aligned}&G_{b}(v)\equiv \,\,\Delta _{2}\,\Delta _{1}\left[ \,1-b\,\right] \left[ \,\Delta _{2}-b\,\Delta _{1}\,\right] +\,\Delta _{1}^{2}\left[ \,1-b\, \right] \left[ \,\Delta _{1}-b\,\Delta _{2}\,\right] \nonumber \\&\qquad -\,\left[ \,v-1\,\right] \left[ \,2\,\Delta _{2}-b\,\Delta _{1}\,\right] \left[ \,\Delta _{2}-\Delta _{1}\,\right] ^{2} \nonumber \\&\quad =\,\,\left[ \,1-b\,\right] \left[ \,\Delta _{2}^{2}\,\Delta _{1}-2\,b\,\Delta _{2}\,\Delta _{1}^{2}+\Delta _{1}^{3}\, \right] -\,\left[ \,v-1\,\right] \left[ \,2\,\Delta _{2}-b\,\Delta _{1}\, \right] \left[ \,\Delta _{2}-\Delta _{1}\,\right] ^{2} \nonumber \\&\quad =\,\,\Delta _{2}^{2}\,\Delta _{1}-2\,b\,\Delta _{2}\,\Delta _{1}^{2}+\Delta _{1}^{3}-b\,\Delta _{2}^{2}\,\Delta _{1}+2\,b^{2}\Delta _{2}\,\Delta _{1}^{2}-b\,\Delta _{1}^{3}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \nonumber \\&\qquad -\,\,2\,v\,\Delta _{2}^{3}-2\,v\,\Delta _{2}\,\Delta _{1}^{2}-2\,b\,v\,\Delta _{2}\,\Delta _{1}^{2}+4\,v\,\Delta _{2}^{2}\,\Delta _{1}\,+b\,v\,\Delta _{2}^{2}\,\Delta _{1}+b\,v\,\Delta _{1}^{3} \nonumber \\&\qquad +\,\,2\,\Delta _{2}^{3}+2\,\Delta _{2}\,\Delta _{1}^{2}+2\,b\,\Delta _{2}\,\Delta _{1}^{2}-4\,\Delta _{2}^{2}\,\Delta _{1}\,-b\,\Delta _{2}^{2}\,\Delta _{1}-b\,\Delta _{1}^{3}\ \ \ \ \ \ \ \ \ \ \ \nonumber \\&\quad =\,\,\left[ \,-\,2\,b+4\,v+b\,v-3\,\right] \Delta _{2}^{2}\,\Delta _{1}+2\left[ \,1+b^{2}-v\left( \,1+b\,\right) \,\right] \Delta _{2}\,\Delta _{1}^{2}\ \ \ \ \ \ \ \ \ \ \nonumber \\&\qquad -\,\,2\left[ \,v-1\,\right] \Delta _{2}^{3}+\left[ \,1-2\,b+b\,v\,\right] \Delta _{1}^{3}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \nonumber \\&\quad =\,\,\Delta _{2}^{2}\,\left\{ \,\left[ \,4\,v-2\,b+b\,v-3\, \right] \Delta _{1}-2\left[ \,v-1\,\right] \Delta _{2}\,\right\} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \nonumber \\&\qquad +\,\,\Delta _{1}^{2}\,\left\{ \,\left[ \,1-2\,b+b\,v\,\right] \Delta _{1}-2 \left[ \,v\left( \,1+b\,\right) -1-b^{2}\,\right] \Delta _{2}\,\right\} .\ \ \ \ \ \ \ \ \ \end{aligned}$$
(73)

Equation (73) implies that if

$$\begin{aligned} \Delta _{2}>\max \,\left\{ \,\frac{4\,v-2\,b+b\,v-3}{2\left[ \,v-1\,\right] }\,\Delta _{1},\frac{1-2\,b+b\,v}{2\left[ \,v\left( 1+b\right) -1-b^{2}\,\right] }\,\Delta _{1}\,\right\} \text {,} \end{aligned}$$
(74)

then \(G_{b}(v)<0\), and so \(\frac{dw_{2}^{0*}}{db}<0\), from (71).

Equation (74) can be restated as:

$$\begin{aligned} \Delta _{2}>\frac{\left[ \,4+b\,\right] v-2\,b-3}{2\left[ \,v-1\,\right] }\,\,\Delta _{1}\,\text {.} \end{aligned}$$
(75)

To see why, observe that:

$$\begin{aligned}&\frac{\left[ \,4+b\,\right] v-2\,b-3}{2\left[ \,v-1\,\right] }>\frac{1-2\,b+b\,v}{2\left[ \,v\left( \,1\,+\,b\,\right) \,-\left( \,1\,+\,b^{2}\right) \,\right] } \nonumber \\&\quad \Leftrightarrow \,\ \left[ \,v-1+b\left( v-b\right) \,\right] \left[ \,4\,v-2\,b+b\,v-\,3\,\right] \,>\,\left[ \,v-1\,\right] \left[ 1-2\,b+b\,v\,\right] \nonumber \\&\quad \Leftrightarrow \,\ 4\left[ \,v\,-1\,\right] ^{2}+b\left[ \,v-b\,\right] \left[ \,4\,v-2\,b+b\,v-3\,\right] \,\,>0\,\text {.} \end{aligned}$$
(76)

The inequality in (76) holds because \(f(v,b)\equiv 4\,v-2\,b+b\,v-3>0\). To see why, observe that \( \frac{\partial f(v,b)}{\partial v}=4+b>0\) and \(\frac{ \partial f(v,b)}{\partial b}=v-2\). Therefore, \(\frac{\partial f(v,b)}{ \partial b}<0\) for \(v\in [\,1,2)\) whereas \(\frac{ \partial f(v,b)}{\partial b}\ge 0\) for \(v\ge 2\). Consequently: (i) \(\min f(v,b)=f(1,1)=0\,\) for \(v\in [\,1,2)\); and (ii) \(\min f(v,b)=f(2,0)=5>0\) for \(v\ge 2\). Therefore, \( f(v,b)\ge \min f(v,b)\ge 0\) for \(v>1\) and \(b\in [\,0,1\,]\).

Further observe that

$$\begin{aligned}&\frac{4\,v-2\,b+b\,v-3\,}{2\left[ \,v-1\,\right] }>b\ \ \Leftrightarrow 4\,v-2\,b+b\,v-3>2\,b\left[ \,v-1\, \right] \nonumber \\&\Leftrightarrow 4\,v-b\,v-3>0\ \ \Leftrightarrow v\left[ \,4-b\,\right] -3>0\,.\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \end{aligned}$$
(77)

The inequality in (77) holds when \(v>1\) because \(\,4-b\,>\,3\). Finding (ii) in the Proposition follows from (74), (75), ( 77), and Assumption 1.

Equation (7) implies that for \(i\in \{1,2\}\):

$$\begin{aligned} \frac{dp_{i}^{\bullet *}}{db}=\frac{ \partial p_{i}^{\bullet *}}{\partial v^{\bullet *}}\,\,\frac{ dv^{\bullet *}}{db}=\Delta _{i}\left[ \,\frac{ 2\,v^{\bullet *}-1-2\left( v^{\bullet *}-1\right) }{\left( 2\,v^{\bullet *}-1\right) ^{2}}\,\right] \frac{dv^{\bullet *}}{db} =\frac{\Delta _{i}}{\left[ \,2\,v^{\bullet *}-1\,\right] ^{2}}\,\,\frac{dv^{\bullet *}}{db}\,\text {.} \end{aligned}$$
(78)

Equations (45) and (78) imply that \(\frac{ dp_{i}^{\bullet *}}{db}<0\) if \(\,v^{\bullet *}>1\) and \(\Delta _{1}\ne \Delta _{2}\).

Equation (8) implies that for \(i,j\in \{1,2\}\) (\(j\ne i\)):

$$\begin{aligned}&\frac{\partial X_{i}^{\bullet *}}{\partial b}=\frac{ v^{\bullet *}\left[ \,-\,\Delta _{j}\left( 1-b\right) +\Delta _{i}-b\,\Delta _{j}\,\right] }{\left[ \,2\,v^{\bullet *}-1\,\right] \left[ \,1-b\,\right] ^{2}}=\frac{v^{\bullet *}\left[ \,\Delta _{i}-\Delta _{j}\,\right] }{\left[ \,2\,v^{\bullet *}-1\,\right] \left[ \,1-b\,\right] ^{2}}\,\text {, and } \nonumber \\&\frac{\partial X_{i}^{\bullet *}}{\partial v^{\bullet *}} =\,\,\left[ \,\frac{\Delta _{i}-b\,\Delta _{j}}{1-b}\,\right] \left[ \,\frac{ 2\,v^{\bullet *}-1-2\,v^{\bullet *}}{\left( 2\,v^{\bullet *}-1\right) ^{2}}\,\right] \,\,=\,\,-\,\frac{\Delta _{i}-b\,\Delta _{j}}{ \left[ \,1-b\,\right] \left[ \,2\,v^{\bullet *}-1\,\right] ^{2}}\,\text { . } \end{aligned}$$
(79)

Equations (8), (45), and (79) imply:

$$\begin{aligned}&\frac{dX_{i}^{\bullet *}}{db}=\frac{\partial X_{i}^{\bullet *}}{\partial b}+\frac{\partial X_{i}^{\bullet *}}{ \partial v^{\bullet *}}\,\,\frac{dv^{\bullet *}}{db} \nonumber \\&\quad =\frac{v^{\bullet *}\left[ \,\Delta _{i}-\Delta _{j}\,\right] }{\left[ \,2\,v^{\bullet *}-1\,\right] \left[ \,1-b\, \right] ^{2}}+\frac{v^{\bullet *}\left[ \,v^{\bullet *}-1\,\right] \left[ \,2\,v^{\bullet *}-1\,\right] \left[ \,\Delta _{i}-\Delta _{j}\, \right] ^{2}\left[ \,\Delta _{i}-b\,\Delta _{j}\,\right] }{H\left[ \,2\,v^{\bullet *}-1\,\right] ^{2}\left[ \,1-b\,\right] ^{2}} \nonumber \\&\quad =\frac{v^{\bullet *}\left[ \,\Delta _{i}-\Delta _{j}\,\right] \left\{ \,H+\left[ \,v^{\bullet *}-1\,\right] \left[ \,\Delta _{i}+\Delta _{j}\,\right] \left[ \,\Delta _{i}-b\,\Delta _{j}\, \right] \,\right\} }{H\left[ \,2\,v^{\bullet *}-1\,\right] \left[ \,1-b\, \right] ^{2}} > reqless \ 0\ \ \Leftrightarrow \ \ \Delta _{i}\ > reqless \ \Delta _{j}\,\text {.} \end{aligned}$$
(80)

Equation (80) implies that the output of the most efficient supplier increases and the output of the least efficient supplier declines as b increases.

Equation (8) implies:

$$\begin{aligned}&X_{1}^{\bullet *}+X_{2}^{\bullet *}=\frac{v^{\bullet *}\left[ \,\Delta _{1}-b\,\Delta _{2}+\Delta _{2}-b\,\Delta _{1}\,\right] }{\left[ \,2\,v^{\bullet *}-1\,\right] \left[ \,1-b\,\right] }= \frac{v^{\bullet *}\left[ \,\Delta _{1}+\Delta _{2}\,\right] \left[ \,1-b\,\right] }{\left[ \,2\,v^{\bullet *}-1\,\right] \left[ \,1-b\,\right] }=\frac{v^{\bullet *}\left[ \,\Delta _{1}+\Delta _{2}\,\right] }{2\,v^{\bullet *}-1} \nonumber \\&\Rightarrow \frac{d\left( X_{1}^{\bullet *}+X_{2}^{\bullet *}\right) }{db}=\frac{\partial \left( X_{1}^{\bullet *}+X_{2}^{\bullet *}\right) }{\partial v^{\bullet *}}\,\,\frac{dv^{\bullet *}}{db}\overset{s}{=}\,\,-\,\frac{1 }{\left[ \,2\,v^{\bullet *}-1\,\right] ^{2}}\,\,\frac{dv^{\bullet *} }{db}\overset{s}{=}\,\,-\,\frac{dv^{\bullet *}}{db}\,\text {. } \end{aligned}$$
(81)

Equations (45) and (81) imply that \(\frac{d\left( X_{1}^{\bullet *}+X_{2}^{\bullet *}\right) }{db}>0 \) when \(v^{\bullet *}>1\) and \(\Delta _{1}\ne \Delta _{2}\). \(\square \)

Proof of Lemma 3

If \(F=0\), the conclusion follows from finding (i) in Lemma 1.

If \(F>0\), then finding (ii) in Lemma 1 implies that \(v>1\) for \(v\in \{v^{*},v^{0*}\}\). Therefore, \(\lambda >0\) at the solution to [RP] because \(\gamma \in \left[ \,0,1\,\right] \) and \(v=\gamma +\lambda \) . Consequently, (4), (7), (8), and (17) imply:

$$\begin{aligned}&\left[ \,p_{1}^{\bullet *}-c_{u}-c_{1}\,\right] X_{1}^{\bullet *}+\left[ \,p_{2}^{\bullet *}-c_{u}-c_{2}\,\right] X_{2}^{\bullet *}=F \nonumber \\&\quad \Rightarrow \frac{\left[ \,v^{\bullet *}-1\,\right] \Delta _{1}}{2\,v^{\bullet *}-1}\,\,\frac{v^{\bullet *} \left[ \,\Delta _{1}-b\,\Delta _{2}\,\right] }{\left[ \,2\,v^{\bullet *}-1\,\right] \left[ \,1-b\,\right] }+\frac{\left[ \,v^{\bullet *}-1\, \right] \Delta _{2}}{2\,v^{\bullet *}-1}\,\,\frac{v^{\bullet *}\left[ \,\Delta _{2}-b\,\Delta _{1}\,\right] }{\left[ \,2\,v^{\bullet *}-1\, \right] \left[ \,1-b\,\right] }=F \nonumber \\&\quad \Rightarrow \frac{v^{\bullet *}\left[ \,v^{\bullet *}-1\,\right] }{\left[ \,2\,v^{\bullet *}-1\,\right] ^{2}}= \frac{F\left[ \,1-b\,\right] }{\Delta _{1}\left[ \,\Delta _{1}-b\,\Delta _{2}\,\right] +\Delta _{2}\left[ \,\Delta _{2}-b\,\Delta _{1}\,\right] }\, . \end{aligned}$$
(82)

Observe that:

$$\begin{aligned}&\frac{\partial }{\partial v}\left( \frac{v\left[ \,v-1\, \right] }{\left[ \,2\,v-1\,\right] ^{2}}\right) \,\overset{s}{=}\,\,\left[ \,2\,v-1\,\right] ^{2}\left[ \,2\,v-1\,\right] -v\left[ \,v-1\,\right] 4 \left[ \,2\,v-1\,\right] \nonumber \\&\overset{s}{=}4\,v^{2}-4\,v+1-4\,v^{2}+4\,v =1>0\,\text {.} \end{aligned}$$
(83)

(83) implies there is a unique v that satisfies (82). Therefore, \(v^{*}=v^{0*}\). \(\square \)

Proof of Proposition 6

The proposition follows from (7) and (8) because \(v^{*}=v^{0*}\), from Lemma 3. \(\square \)

Proof of Proposition 7

Equation (6) implies that for \(v=v^{*}= v^{0*}\):

$$\begin{aligned} w_{1}^{*}-w_{1}^{0*}=\frac{\left[ \,v-1\,\right] \Delta _{1}}{2\,v-1}+\frac{\Delta _{1}-b\,v\,\Delta _{2}}{2\,v-1\,}= \frac{\,v\left[ \,\Delta _{1}-b\,\Delta _{2}\right] }{2\,v-1} >0\text {. } \end{aligned}$$

\(\square \)

Proof of Proposition 8

\(v^{*}=v^{0*}\), from Lemma 3. Therefore, the conclusion follows directly from (6). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, S., Sappington, D.E.M. Access pricing in network industries with mixed oligopoly. J Regul Econ 59, 193–225 (2021). https://doi.org/10.1007/s11149-021-09427-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11149-021-09427-2

Keywords

JEL Classifications

Navigation