Skip to main content

Advertisement

Log in

Eigenvalues of quantum walk induced by recurrence properties of the underlying birth and death process: application to computation of an edge state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we consider an extended coined Szegedy model and discuss the existence of the point spectrum of induced quantum walks in terms of recurrence properties of the underlying birth and death process. We obtain that if the underlying random walk is not null recurrent, then the point spectrum exists in the induced quantum walks. As an application, we provide a simple computational way of the dispersion relation of the edge state part for the topological phase model driven by quantum walk using the recurrence properties of underlying birth and death process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. In [10], it is shown that coined quantum walks are unitarily equivalent to several kinds of quantum walk models such as 2-staggered walk [13], the Szegedy model [18], split step quantum walks and so on by some graph deformations of the original graph [10].

  2. The stationary state exists and is proportion to \(1/E(T_j)\).

References

  1. Asboth, J.K., Edge, J.M.: Edge-state-enhanced transport in a two-dimensional quantum walk. Phys. Rev. A 91, 022324 (2015)

    Article  ADS  Google Scholar 

  2. Cantero, M.J., Grünbaum, F.A., Moral, L., Velázquez, L.: Matrix valued Szegö polynomials and quantum walks. Commun. Pure Appl. Math. 63, 464–507 (2010)

    MATH  Google Scholar 

  3. Durrett, R.: Probability: Theory and Examples. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  4. Endo, T., Konno, N., Obuse, H., Segawa, E.: Sensitivity of quantum walks to boundary of two-dimensional lattices: approaches from the CGMV method and topological phases. J. Phys. A Math. Theor. 50, 455302 (2017)

    Article  ADS  Google Scholar 

  5. Ho, C.-L., Ide, Y., Konno, N., Segawa, E., Takumi, K.: A spectral analysis of discrete-time quantum walks with related to birth and death chains. J. Stat. Phys. 171, 207–219 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  6. Higuchi, Yu., Konno, N., Sato, I., Segawa, E.: Spectral and asymptotic properties of Grover walks on crystal lattices. J. Funct. Anal. 267, 197–235 (2014)

    Article  MathSciNet  Google Scholar 

  7. Higuchi, Yu., Portugal, R., Sato, I., Segawa, E.: Eigenbasis of the evolution operator of 2-tessellable quantum walks. Linear Algebra Appl. 583, 257–281 (2019)

    Article  MathSciNet  Google Scholar 

  8. Higuchi, Yu., Segawa, E.: Quantum walks induced by Dirichlet random walks on infinite trees. J. Phys. A Math. Theor. 51, 075303 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  9. Igarashi, D., Obata, N.: Asymptotic spectral analysis of growing graphs: odd graphs and spidernets. Banach Center Publ. 73, 245–265 (2006)

    Article  MathSciNet  Google Scholar 

  10. Konno, N., Portugal, R., Sato, I., Segawa, E.: Partition-based discrete-time quantum walks. Quantum Inf. Process. 17(4), 100 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  11. Matsue, K., Ogurisu, O., Segawa, E.: A note on the spectral mapping theorem of quantum walk models. Interdiscip. Inf. Sci. 23, 105–114 (2017)

    MathSciNet  Google Scholar 

  12. Ohno, H.: Unitary equivalence classes of one-dimensional quantum walks II. Quantum Inf. Process. 16, 287 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  13. Portugal, R.: Staggered quantum walks on graphs. Phys. Rev. A 93, 062335 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  14. Portugal, R.: Quantum Walks and Search Algorithms, 2nd edn. Springer, Berlin (2018)

    Book  Google Scholar 

  15. Segawa, E.: Localization of quantum walks induced by recurrence properties of random walks. J. Comput. Theor. Nanosci. Theor. Math. Aspects Discrete Time Quantum Walk 10, 1583–1590 (2013)

    Google Scholar 

  16. Schinazi, R.B.: Classical and Spatial Stochastic Processes, Birkhäuser (1999)

  17. Segawa, E., Suzuki, A.: Generator of an abstract quantum walk. Quantum Stud. Math. Found. 3, 11–30 (2016)

    Article  MathSciNet  Google Scholar 

  18. Szegedy, M.: Quantum speed-up of Markov chain based algorithms. In: Proceedings of 45th IEEE Symposium on Foundations of Computer Science, 32–41 (2004)

Download references

Acknowledgements

YI was supported by the Grant-in-Aid for Young Scientists (B) of Japan Society for the Promotion of Science (Grant No. 16K17652). ES acknowledges financial support from the Grant-in-Aid of Scientific Research (C) Japan Society for the Promotion of Science (Grant No. 19K03616).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etsuo Segawa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: computation of \(\ker (C_j+ie^{i\phi })\)

Appendix A: computation of \(\ker (C_j+ie^{i\phi })\)

The \((-ie^{i\phi })\)-eigenvector of \(C_j\) is expressed by

$$\begin{aligned} \ker (C_j+ie^{i\phi })={\mathbb {C}}\begin{bmatrix} \rho _j \\ \eta _j-ie^{i\phi } \end{bmatrix}. \end{aligned}$$

Recall that \(\cos \phi =\kappa =\mathrm {Im}(\eta _j)\) and \(e^{i\phi }=\kappa +i\sqrt{1-\kappa ^2}\). Then, each element of the eigenvector can be deformed by

$$\begin{aligned} \rho _j=\sqrt{ (1-\kappa ^2)-\mathrm {Re}(\eta _j)^2 }=A_+A_-, \; \eta _j-ie^{i\phi } =\sqrt{ 1-\kappa ^2 }+\mathrm {Re}(\eta _j) =A_+^2, \end{aligned}$$

respectively. Here we put

$$\begin{aligned} A_\pm :=\sqrt{\sqrt{1-\kappa ^2}\pm \mathrm {Re}(\eta _j)}. \end{aligned}$$

Therefore the normalized eigenvector is expressed by

$$\begin{aligned} \frac{1}{\sqrt{A_+^2+A_-^2}}\; {}^T[A_-\; A_+]={}^T[\sqrt{p_j}\; \sqrt{q_j}], \end{aligned}$$

where

$$\begin{aligned} p_j=\frac{1}{2}\left( 1-\frac{\mathrm {Re}(\eta _j)}{\sqrt{1-\kappa ^2}} \right) ,\;q_j=\frac{1}{2}\left( 1+\frac{\mathrm {Re}(\eta _j)}{\sqrt{1-\kappa ^2}} \right) . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ide, Y., Konno, N. & Segawa, E. Eigenvalues of quantum walk induced by recurrence properties of the underlying birth and death process: application to computation of an edge state. Quantum Inf Process 20, 160 (2021). https://doi.org/10.1007/s11128-021-02999-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-02999-0

Keywords

Navigation