Skip to main content
Log in

Optical properties and diamagnetic susceptibility of a hexagonal quantum dot: impurity effect

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this work, a hexagonal quantum dot (HQD) with hydrogenic donor impurity was considered. We have first employed the finite element method (FEM) to determine energy eigenvalues and eigenstates of the system. Then, we have calculated the binding energy, absorption coefficients (ACs), refractive index changes (RICs), diamagnetic susceptibility, entropy and specific heat of the system under influence of impurity location. It is found that (1) total ACs and RICs show a maximum value at an especial impurity location and the properties have a blue or red shift with changing the impurity position. (2) The influence of impurity position on the electronic, optical and thermodynamic properties of a HQD is considerable. (3) The absolute value of diamagnetic susceptibility with impurity is lower than it without impurity. (4) The specific heat shows a peak structure in the presence of impurity. The peak position of specific heat depends on impurity location and temperature. (5) Entropy is reduced in the presence of impurity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahn, D., Chuang, S.L.: Calculation of linear and nonlinear intersubband optical absorptions in a quantum well model with an applied electric field. IEEE J. Quantum Electron. 23, 2196–2204 (1987)

    Article  ADS  Google Scholar 

  • Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Harcourt College Publishers, San Diego (1976)

    MATH  Google Scholar 

  • Bera, A., Saha, S., Ganguly, J., Ghosh, M.: Exploring diamagnetic susceptibility of impurity doped quantum dots in presence of Gaussian white noise. J. Phys. Chem. Solids 98, 190–197 (2016a)

    Article  ADS  Google Scholar 

  • Bera, A., Saha, S., Ganguly, J., Ghosh, M.: Noise-driven diamagnetic susceptibility of impurity doped quantum dots: role of anisotropy, position-dependent effective mass and position-dependent dielectric screening function. Chem. Phys. 474, 36–43 (2016b)

    Article  Google Scholar 

  • Bertel, R., Mora-Ramos, M.E., Correa, J.D.: Electronic properties and optical response of triangular and hexagonal MoS2 quantum dots. A DFT approach. Physica E 109, 201–208 (2019)

    Article  ADS  Google Scholar 

  • Bilekkaya, A., Aktas, S., Okan, S.E., Boz, F.K.: Electric and magnetic field effects on the binding energy of a hydrogenic impurity in quantum well wires with different shapes. Superlatt. Microstruct. 44, 96–105 (2008)

    Article  ADS  Google Scholar 

  • Boda, A.: Intersubband optical absorption in Gaussian GaAs quantum dot in the presence of magnetic, electrical and AB flux fields. Physica B 575, 411699–411704 (2019)

    Article  Google Scholar 

  • Boda, A., Kumar, D.S., Sankar, I.V., Chatterjee, A.: Effect of electron–electron interaction on the magnetic moment and susceptibility of a parabolic GaAs quantum dot. J. Mag. Mag. Mater. 418, 242–247 (2016)

    Article  ADS  Google Scholar 

  • Boyd, R.W.: Nonlinear Optics. Academic Press, New York (2003)

    Google Scholar 

  • Chuu, D.S., Hsiao, C.M., Mei, W.N.: Hydrogenic impurity states in quantum dots and quantum wires. Phys. Rev. B 46, 3898–3905 (1992)

    Article  ADS  Google Scholar 

  • Donabidowicz, A., Domański, T.: Tunneling through the quantum dot coupled to incoherent superconductor. Acta Phys. Pol. A 111, 671–682 (2007)

    Article  ADS  Google Scholar 

  • Elsaid, M.K., Hijaz, E.: Magnetic susceptibility of coupled double GaAs quantum dot in magnetic fields. Acta Phys. Pol. A 131, 1491–1496 (2017)

    Article  ADS  Google Scholar 

  • Ferry, D.K., Goodnick, S.M.: Transport in Nanostructures. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  • Hutton, D.V.: Fundamentals of Finite Element Analysis. McGraw-Hill, New York (2004)

    Google Scholar 

  • Jayam, S.G., Navaneethakrishnan, K.: Effects of electric field and hydrostatic pressure on donor binding energies in a spherical quantum dot. Solid State Commun. 126, 681–685 (2003)

    Article  ADS  Google Scholar 

  • Kasapoglu, E., Sari, H., Sokmen, I.: Geometrical effects on shallow donor impurities in quantum wires. Physica E 19, 332–335 (2003)

    Article  ADS  Google Scholar 

  • Khordad, R.: Third-harmonic generation in a double ring-shaped quantum dot under electron–phonon interaction. Opt. Commun. 391, 121–127 (2017)

    Article  ADS  Google Scholar 

  • Khordad, R., Bahramiyan, H.: Electronic and optical properties of a lens shaped quantum dot under magnetic field: second and third-harmonic generation. Commun. Theor. Phys. 62, 283–289 (2014a)

    Article  ADS  MathSciNet  Google Scholar 

  • Khordad, R., Bahramiyan, H.: Optical properties of a GaAs cone-like quantum dot: Second and third-harmonic generation. Opt. Spectrosc. 117, 447–452 (2014b)

    Article  ADS  MATH  Google Scholar 

  • Khordad, R., Bahramiyan, H.: Study of impurity position effect in pyramid and cone like quantum dots. Eur. Phys. J. Appl. Phys. 67, 20402–20408 (2014c)

    Article  ADS  Google Scholar 

  • Khordad, R., Bahramiyan, H.: Impurity position effect on optical properties of various quantum dots. Physica E 66, 107–115 (2015)

    Article  ADS  Google Scholar 

  • Khordad, R., Mirhosseni, B.: Linear and nonlinear optical properties in spherical quantum dots: Rosen–Morse potential. Opt. Spectrosc. 117, 434–440 (2014)

    Article  ADS  Google Scholar 

  • Khordad, R., Vaseghi, B.: Magnetic properties in three electrons under Rashba spin–orbit interaction and magnetic field. Int. J. Quantum Chem. 119, e25994–e26003 (2019)

    Article  Google Scholar 

  • Khordad, R., Rastegar Sedehi, H.R., Bahramiyan, H.: Simultaneous effects of impurity and electric field on entropy behavior in double cone-like quantum dot. Commun. Theor. Phys. 69, 95–100 (2018a)

    Article  ADS  Google Scholar 

  • Khordad, R., Bahramiyan, H., Rastegar Sedehi, H.R.: Effects of strain, magnetic field and temperature on entropy of a two dimensional GaAs quantum dot under spin–orbit interaction. Opt. Quantum Electron. 50, 294–306 (2018b)

    Article  Google Scholar 

  • Khordad, R., Mirhosseini, B., Mirhosseini, M.M.: Thermodynamic properties of a GaAs quantum dot with an effective-parabolic potential: theory and simulation. J. Low Temp. Phys. 197, 95–110 (2019)

    Article  ADS  MATH  Google Scholar 

  • Kumar, D.S., Mukhopadhyay, S., Chatterjee, A.: Magnetization and susceptibility of a parabolic InAs quantum dot with electron–electron and spin–orbit interactions in the presence of a magnetic field at finite temperature. J. Mag. Mag. Mater. 418, 169–174 (2016)

    Article  ADS  Google Scholar 

  • Lu, M., Yang, X.J., Perry, S.S., Rabalais, J.W.: Self-organized nanodot formation on MgO (100) by ion bombardment at high temperatures. Appl. Phys. Lett. 80, 2096–2098 (2002)

    Article  ADS  Google Scholar 

  • Mughnetsyan, V.N., Barseghyan, M.G., Ki-rakosian, A.A.: Binding energy and photoionization cross section of hydrogen-like donor impurity in quantum well wire in electric and magnetic fields. Superlatt. Microstruct. 44, 86–95 (2008)

    Article  ADS  Google Scholar 

  • Nandakumar, P., Vijayan, C., Murti, Y.V.G.S.: Optical absorption and photoluminescence studies on CdS quantum dots in Nafion. J. Appl. Phys. 91, 1509–1514 (2002)

    Article  ADS  Google Scholar 

  • Rastegar Sedehi, H.R.: Thermodynamics properties of Bernal stacking multilayer graphene. Eur. Phys. J. B 93, 14–20 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  • Rodriguez, A.H., Ramirez, H.Y.: Analytical calculation of eigen-energies for lens-shaped quantum dot with finite barriers. Eur. Phys. J. B 66, 235–238 (2008)

    Article  ADS  Google Scholar 

  • Safwan, S.A., Saleh, A., Hassanein, H.M., El Meshed, N.: Hydrostatic pressure and magnetic field effect on the excited states in inverse parabolic quantum dot. Curr. Appl. Phys. 18, 34–39 (2018)

    Article  ADS  Google Scholar 

  • Saha, S., Ganguly, J., Bera, A., Ghosh, M.: Simultaneous influence of hydrostatic pressure and temperature on diamagnetic susceptibility of impurity doped quantum dots under the aegis of noise. Chem. Phys. 480, 17–22 (2016)

    Article  Google Scholar 

  • Sakr, M.R.: Determination of the Rashba and Dresselhaus coupling constants using the conductance of a ballistic nanowire. Physica E 44, 635–640 (2011)

    Article  ADS  Google Scholar 

  • Sakr, M.R.: In-plane electron g-factor anisotropy in nanowires due to the spin–orbit interaction. Physica E 64, 68–71 (2014)

    Article  ADS  Google Scholar 

  • Sheng, W., Leburton, J.P.: Absence of correlation between built-in electric dipole moment and quantum Stark effect in single InAs/GaAs self-assembled quantum dots. Phys. Rev. B 67, 125308–125311 (2003)

    Article  ADS  Google Scholar 

  • Stokes, A., Deb, P., Beige, A.: Using thermodynamics to identify quantum subsystems. J. Mod. Opt. 64, S7–S19 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  • Tsetseri, M., Triberis, G.P.: A study of the ground state of quantum wires using the finite difference method. Superlatt. Microstruct. 32, 79–90 (2002)

    Article  ADS  Google Scholar 

  • Unlu, S., Karabulut, I., Safak, H.: Linear and nonlinear intersubband optical absorption coefficients and refractive index changes in a quantum box with finite confining potential. Physica E 33, 319–324 (2006)

    Article  ADS  Google Scholar 

  • Wrześniewski, K., Weymann, I.: Influence of magnetic field on dark states in transport through triple quantum dots. Acta Phys. Pol. A 132, 108–111 (2017)

    Article  ADS  Google Scholar 

  • Yan, L., Seminario, J.M.: Electron transport in nano-Gold–Silicon interfaces. Int. J. Quantum Chem. 107, 440–450 (2007)

    Article  ADS  Google Scholar 

  • Zhu, J.L.: Exact solutions for hydrogenic donor states in a spherically rectangular quantum well. Phys. Rev. B 39, 8780–8783 (1989)

    Article  ADS  Google Scholar 

  • Zuo, Z.W., Xie, H.J.: Electron–phonon interaction in fan-shaped quantum dot and quantum wire. Superlatt. Microstruct. 49, 60–73 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. R. Rastegar Sedehi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rastegar Sedehi, H.R., Khordad, R. & Bahramiyan, H. Optical properties and diamagnetic susceptibility of a hexagonal quantum dot: impurity effect. Opt Quant Electron 53, 264 (2021). https://doi.org/10.1007/s11082-021-02927-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-02927-7

Keywords

Navigation