Skip to main content
Log in

Precipitation of Heavy Metal Ions (Cu, Fe, Zn, and Pb) from Mining Flotation Effluents Using a Laboratory-Scale Upflow Anaerobic Sludge Blanket Reactor

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Metal mining extraction and concentration need water. The recycling of liquid effluents reduces its consumption. This recycled water must contain low concentrations of metals. This project’s first objective was to start up a laboratory-scale upflow anaerobic sludge blanket (UASB) reactor for biotransforming metal sulfates into metal sulfides of effluent from flotation units of a mining plant (FE). The second objective was to determine the effect of pH and chemical oxygen demand:sulfate ratio (COD:SO42−) in the precipitation of heavy metal sulfides. The third objective, which is the subject of this part of the research, was to evaluate the feasibility of this proposal through a mass balance of the metals separated by precipitation through the formation of sulfides by sulfate-reducing microorganisms (SRM), using as energy source carbonaceous compounds from flotation residual organic reagents enriched with lactic acid. To monitor bioconversion effectiveness, various parameters were used: pH-alkalinity factor (α), temperature (T), COD, SO42−, and sulfides (S2−). Four metals were considered for this part of the research: Cu, Pb, Zn, and Fe. The UASB system achieved a sulfate bioconversion of 69% and an organic matter removal as COD of 88% after transient state with the best COD:SO42− ratio found. Using a statistical analysis by clusters, metal sulfide production of 74 mg L−1 and removals of 39, 70, 79, and 65%, for Pb, Cu Zn, and Fe, respectively, were obtained. These values were calculated with an initial ratio of COD:SO42− of 0.66 ± 0.2 and pH values around 6 inside the reactor, through anaerobic microbial biomass, indicating that the solution proposed to recycle water in the metal extraction and concentration is feasible after using these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Data are available upon request.

Code Availability

Not applicable

Abbreviations

COD:

chemical oxygen demand

FE:

flotation units’ effluent water

Ksp:

Solubility product constant

LA:

lactic acid

SRM:

sulfate-reducing microorganisms

T:

temparature

UASB:

upflow anaerobic sludge blanket (reactor)

VFA:

volatile fatty acids

α:

alkalinity factor

References

  • Abramov, A. A., & Forssberg, K. S. E. (2005). Chemistry and optimal conditions for copper minerals flotation: Theory and practice. Mineral Processing & Extractive Metall. Rev., 26(2), 77–143. https://doi.org/10.1080/08827500590883197.

    Article  CAS  Google Scholar 

  • Anawar, H. M. (2015). Sustainable rehabilitation of mining waste and acid mine drainage using geochemistry, mine type, mineralogy, texture, ore extraction, and climate knowledge. Journal of EnvironmentalManagement, 158, 111–121. https://doi.org/10.1016/j.jenvman.2015.04.045.

    Article  CAS  Google Scholar 

  • APHA-AWWA-WPCF. (1992). Standard methods for the examination of water and wastewater (Vol. 2). Washington, DC, U. S: American Public Health Association, American Water Works Association, Water Pollution Control Federation, and Water Environment Federation.

    Google Scholar 

  • Azabou, S., Mechichi, T., & Sayadi, S. (2007). Zinc precipitation by heavy-metal tolerant sulfate-reducing bacteria enriched on phosphogypsum as a sulfate source. Minerals Engineering, 20(2), 173–178. https://doi.org/10.1016/j.mineng.2006.08.008.

    Article  CAS  Google Scholar 

  • Bazúa-Rueda, E. R., Bernal-González, M., Amábilis-Sosa, L. E., Cano-Rodríguez, M. I., García-Gómez, R. S., Ramírez-Burgos, L. I., Salgado-Bernal, I., Sánchez-Tovar, S. A., Solís-Fuentes, J. A., & Durán-Domínguez-de-Bazúa, M. d. C. (2020). Mining, water and society: Recycling of mining effluents as a social solution to the use of water in Mexico. In E. M. Otazo-Sánchez, A. E. Navarro-Frómeta, & V. P. Singh (Eds.), Chapter 19. Pp. 389-411. Water Science and Technology Library 999 Water Availability and Management in Mexico. Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-030-24962-5_19.

  • Benner, S. G., Blowes, D. W., & Ptacek, C. J. (1997). A full-scale porous reactive wall for the prevention of acid mine drainage. Groundwater Monitoring & Remediation, 17(4), 99–107. https://doi.org/10.1111/j.1745-6592.1997.tb01269.x.

    Article  CAS  Google Scholar 

  • Bernardez, L. A., de Andrade Lima, L. R. P., De Jesus, E. B., Ramos, C. L. S., & Almeida, P. F. D. (2013). A kinetic study on bacterial sulfate reduction. Bioprocess and Biosystems Engineering, 36(12), 1861–1869. https://doi.org/10.1007/s00449-013-0960-0.

    Article  CAS  Google Scholar 

  • Bicak, O., Özturk, Y., Ozdemir, E., & Ekmekci, Z. (2018). Modelling effects of dissolved ions in process water on flotation performance. Minerals Engineering, 128, 84–91. https://doi.org/10.1016/j.mineng.2018.08.031.

    Article  CAS  Google Scholar 

  • Boujounoui, K., Abidi, A., Bacaoui, A., El Amari, K., & Yaacoubi, A. (2015). The influence of water quality on the flotation performance of complex sulphide ores: Case study at Hajar mine, Morocco. Journal of the Southern African Institute of Mining and Metallurgy, 115(12), 1243–1251. https://doi.org/10.17159/2411-9717/2015/v115n12a14.

    Article  CAS  Google Scholar 

  • Bulut, G., & Yenial, Ü. (2016). Effects of major ions in recycled water on sulfide minerals flotation. Minerals & Metallurgical Processing, 33(3), 137–143. https://doi.org/10.17159/2411-9717/2015/v115n12a14.

    Article  CAS  Google Scholar 

  • Burns, A. S., Pugh, C. W., Segid, Y. T., Behum, P. T., Lefticariu, L., & Bender, K. S. (2012). Performance and microbial community dynamics of a sulfate-reducing bioreactor treating coal generated acid mine drainage. Biodegradation, 23(3), 415–429. https://doi.org/10.1007/s10532-011-9520-y.

    Article  CAS  Google Scholar 

  • Calixto-Cano, K. L. (2018). Caracterización química del efluente líquido proveniente del proceso de flotación de una planta minera sometido a un tratamiento biológico mediante un reactor anaerobio de lecho de lodos de flujo ascendente (RALLFA) (in Spanish) [Chemical characterization of the liquid effluent from the flotation process of a mining plant subjected to a biological treatment in an up-flow anaerobic sludge blanket reactor (UASB). Professional thesis in Chemical Engineering, Universidad Nacional Autónoma de México. Mexico City, Mexico. http://132.248.9.195/ptd2019/febrero/0785179/Index.html

  • Callado, N., Damianovic, M. H. R. Z., & Foresti, E. (2015). Resilience of methanogenesis in an anaerobic reactor subjected to increasing sulfate and sodium concentrations. Journal of Water Process Engineering, 7, 203–209. https://doi.org/10.1016/j.jwpe.2015.06.011.

    Article  Google Scholar 

  • Carrillo-Chávez, A., Morton-Bermea, O., González-Partida, E., Rivas-Solorzano, H., Oesler, G., Garcı́a-Meza, V., & Cienfuegos, E. (2003). Environmental geochemistry of the Guanajuato mining district, Mexico. Ore Geology Reviews, 23(3-4), 277–297. https://doi.org/10.1016/S0169-1368(03)00039-8.

    Article  Google Scholar 

  • Cassidy, J., Lubberding, H. J., Esposito, G., Keesman, K. J., & Lens, P. N. (2015). Automated biological sulphate reduction: A review on mathematical models, monitoring and bioprocess control. FEMS Microbiology Reviews, 39(6), 823–853. https://doi.org/10.1093/femsre/fuv033.

    Article  CAS  Google Scholar 

  • Chen, J. L., Ortiz, R., Steele, T. W., & Stuckey, D. C. (2014). Toxicants inhibiting anaerobic digestion: A review. Biotechnology Advances, 32(8), 1523–1534. https://doi.org/10.1016/j.biotechadv.2014.10.005.

    Article  CAS  Google Scholar 

  • Coetzer, G., Du Preez, H. S., & Bredenhann, R. (2003). Influence of water resources and metal ions on galena flotation of Rosh Pinah ore. Journal of the Southern African Institute of Mining and Metallurgy, 103(3), 193–207 https://www.saimm.co.za/Journal/v103n03p193.pdf.

    CAS  Google Scholar 

  • Cuéllar-Briseño, R., Castillo-Garduño, A. M., Galicia-Alvarado, L. E., Quiahua-Salvador, G., Bernal-González, M., Durán-Domínguez, M. D. C., Bazúa-Rueda, E. R. (2019). Mining in Mexico and the environment: Heavy metals follow-up/La minería en México y su relación con el ambiente: Seguimiento de metales pesados (in Spanish). In Final e-Book Tenth International DAAD Alumni and Alumnae Seminar: Green Engineering. In Honor of Dr. Peter Kuschk and Dr. Hanns Sylvester. ISBN 978-607-7807-07-0. M. Bernal-González, M. d. C. Durán-Domínguez-de-Bazúa, R. S. García-Gómez, L. I. Ramírez-Burgos, Eds. UNAM-DAAD, Mexico-Germany. Pp. 111-121. Mexico City, Mexico.

  • Deo, N., & Natarajan, K. A. (1998). Biological removal of some flotation collector reagents from aqueous solutions and mineral surfaces. Minerals Engineering, 11(8), 717–738. https://doi.org/10.1016/S0892-6875(98)00058-2.

    Article  CAS  Google Scholar 

  • Dobson, R. S., & Burgess, J. E. (2007). Biological treatment of precious metal refinery wastewater: A review. Minerals Engineering, 20(6), 519–532. https://doi.org/10.1016/j.mineng.2006.10.011.

    Article  CAS  Google Scholar 

  • DOF. (1981). Análisis de aguas - Determinación del ión sulfato - Método de Prueba. Norma Mexicana NMX-AA-074-SFCI-2001. Diario Oficial de la Federación. Poder Ejecutivo Federal. Estados Unidos Mexicanos (in Spanish).

  • DOF. (1982). Análisis de aguas - Determinación de sulfuros - Método de Prueba. Norma Mexicana NMX-AA-084-2001. Diario Oficial de la Federación. Poder Ejecutivo Federal. Estados Unidos Mexicanos (in Spanish).

  • DOF. (2001a). Análisis de aguas - Determinación de la demanda química de oxígeno en aguas naturales, residuales y residuales tratadas - Método de Prueba. Norma Mexicana NMX-AA-030-SFCI-2001. Diario Oficial de la Federación. Poder Ejecutivo Federal. Estados Unidos Mexicanos (in Spanish).

  • DOF. (2001b). Análisis de aguas - Determinación de acidez y alcalinidad en aguas naturales, residuales y residuales tratadas - Método de Prueba. Norma Mexicana NMX-AA-036-SFCI-2001. Diario Oficial de la Federación. Poder Ejecutivo Federal. Estados Unidos Mexicanos (in Spanish).

  • DOF. (2001c). Análisis de aguas - Determinación de metales por absorción atómica en aguas naturales, potables, residuales y residuales tratadas - Método de Prueba Norma Mexicana NMX-AA-051-SCFI-2001, Diario Oficial de la Federación. Poder Ejecutivo Federal. Estados Unidos Mexicanos (in Spanish).

  • DOF. (2011). Análisis de agua-Determinación del pH - Método de Prueba. Norma Mexicana NMX-AA-008-SFCI-2011. Diario Oficial de la Federación. Poder Ejecutivo Federal. Estados Unidos Mexicanos (in Spanish).

  • DOF. (2013). Análisis de agua-Medición de la temperatura en aguas naturales, residuales y residuales tratadas - Método de Prueba. Norma Mexicana NMX-AA-007-SFCI-2013. Diario Oficial de la Federación. Poder Ejecutivo Federal. Estados Unidos Mexicanos (in Spanish).

  • Esposito, G., Veeken, A., Weijma, J., & Lens, P. N. L. (2006). Use of biogenic sulfide for ZnS precipitation. Separation and Purification Technology, 51(1), 31–39. https://doi.org/10.1016/j.seppur.2005.12.021.

    Article  CAS  Google Scholar 

  • Feng, D., Aldrich, C., & Tan, H. (2000). Treatment of acid mine water by use of heavy metal precipitation and ion exchange. Minerals Engineering, 13(6), 623–642. https://doi.org/10.1016/S0892-6875(00)00045-5.

    Article  CAS  Google Scholar 

  • Gallegos-García, M., Celis, L. B., Rangel-Méndez, R., & Razo-Flores, E. (2009). Precipitation and recovery of metal sulfides from metal containing acidic wastewater in a sulfidogenic down-flow fluidized bed reactor. Biotechnology and Bioengineering, 102(1), 91–99. https://doi.org/10.1002/bit.22049.

    Article  CAS  Google Scholar 

  • García, V., Häyrynen, P., Landaburu-Aguirre, J., Pirilä, M., Keiski, R. L., & Urtiaga, A. (2014). Purification techniques for the recovery of valuable compounds from acid mine drainage and cyanide tailings: Application of green engineering principles. Journal of Chemical Technology and Biotechnology, 89(6), 803–813. https://doi.org/10.1002/jctb.4328.

    Article  CAS  Google Scholar 

  • Gogoi, H., Leiviskä, T., Rämö, J., & Tanskanen, J. (2019). Production of aminated peat from branched polyethyleneimine and glycidyltrimethylammonium chloride for sulphate removal from mining water. Environmental Research, 175, 323–334. https://doi.org/10.1016/j.envres.2019.05.022.

    Article  CAS  Google Scholar 

  • Gonçalves, M. M. M., Da Costa, A. C. A., Leite, S. G. F., & Sant’Anna Jr., G. L. (2007). Heavy metal removal from synthetic wastewaters in an anaerobic bioreactor using stillage from ethanol distilleries as a carbon source. Chemosphere, 69(11), 1815–1820. https://doi.org/10.1016/j.chemosphere.2007.05.074.

    Article  CAS  Google Scholar 

  • Gu, S., Fu, B., & Ahn, J. W. (2020). Simultaneous removal of residual sulfate and heavy metals from spent electrolyte of lead-acid battery after precipitation and carbonation. Sustainability, 12(3), 1263. https://doi.org/10.3390/su12031263.

    Article  CAS  Google Scholar 

  • Hu, Y., Jing, Z., Sudo, Y., Niu, Q., Du, J., Wu, J., & Li, Y. Y. (2015). Effect of influent COD/SO42− ratios on UASB treatment of a synthetic sulfate-containing wastewater. Chemosphere, 130, 24–33. https://doi.org/10.1016/j.chemosphere.2015.02.019.

    Article  CAS  Google Scholar 

  • Huisman, J. L., Schouten, G., & Schultz, C. (2006). Biologically produced sulphide for purification of process streams, effluent treatment, and recovery of metals in the metal and mining industry. Hydrometallurgy, 83(1-4), 106–113. https://doi.org/10.1016/j.hydromet.2006.03.017.

    Article  CAS  Google Scholar 

  • Kaksonen, A. H., & Puhakka, J. A. (2007). Sulfate reduction based bioprocesses for the treatment of acid mine drainage and the recovery of metals. Engineering in Life Sciences, 7(6), 541–564. https://doi.org/10.1002/elsc.200720216.

    Article  CAS  Google Scholar 

  • Kaksonen, A. H., Lavonen, L., Kuusenaho, M., Kolli, A., Närhi, H., Vestola, E., & Tuovinen, O. H. (2011). Bioleaching and recovery of metals from final slag waste of the copper smelting industry. Minerals Engineering, 24(11), 1113–1121. https://doi.org/10.1016/j.mineng.2011.02.011.

    Article  CAS  Google Scholar 

  • Kali, M., Fyson, A., & Wheeler, W. N. (2006). The chemistry of conventional and alternative treatment systems for the neutralization of acid mine drainage. Sci. Total Environ., 366, 395–408.

    Article  Google Scholar 

  • Kang, C. H., Kwon, Y. J., & So, J. S. (2016). Bioremediation of heavy metals by using bacterial mixtures. Ecological Engineering, 89, 64–69. https://doi.org/10.1016/j.ecoleng.2016.01.023.

    Article  Google Scholar 

  • Kefeni, K. K., Msagati, T. M., Maree, J. P., & Mamba, B. B. (2015). Metals and sulphate removal from acid mine drainage in two steps via ferrite sludge and barium sulphate formation. Minerals Engineering, 81, 79–87. https://doi.org/10.1016/j.mineng.2015.07.016.

    Article  CAS  Google Scholar 

  • Kieu, H. T., Müller, E., & Horn, H. (2011). Heavy metal removal in anaerobic semi-continuous stirred tank reactors by a consortium of sulfate-reducing bacteria. Water Research, 45(13), 3863–3870. https://doi.org/10.1016/j.watres.2011.04.043.

    Article  CAS  Google Scholar 

  • Kiiskila, J. D., Sarkar, D., Feuerstein, K. A., & Datta, R. (2017). A preliminary study to design a floating treatment wetland for remediating acid mine drainage-impacted water using vetiver grass (Chrysopogon zizanioides). Environmental Science and Pollution Research, 24(36), 27985–27993. https://doi.org/10.1007/s11356-017-0401-8.

    Article  CAS  Google Scholar 

  • Kimura, S., Hallberg, K. B., & Johnson, D. B. (2006). Sulfidogenesis in low pH (3.8–4.2) media by a mixed population of acidophilic bacteria. Biodegradation, 17(2), 57–65. https://doi.org/10.1007/s10532-005-3050-4.

    Article  CAS  Google Scholar 

  • Kiran, M. G., Pakshirajan, K., & Das, G. (2018). Metallic wastewater treatment by sulfate reduction using anaerobic rotating biological contactor reactor under high metal loading conditions. Frontiers of Environmental Science & Engineering, 12(4), 1–11. https://doi.org/10.1007/s11783-018-1073-4.

    Article  CAS  Google Scholar 

  • Kusumawati, E., Sudrajat, S., Purnamasari, I., Panggabean, B. C., & Apriyanti, M. (2017). The potential of sulfate reducing bacteria of ex-coal mine sediment pond as sulfate reducing agents of acid land in Samarinda, Indonesia. Bonorowo Wetlands, 7(2), 79–82. https://doi.org/10.13057/bonorowo/w070204.

    Article  Google Scholar 

  • Lawrence, A. W., & McCarty, P. L. (1965). The role of sulfide in preventing heavy metal toxicity in anaerobic treatment. Journal Water Pollution Control Federation, 392–406 https://www.jstor.org/stable/25035257.

  • Lefticariu, L., Walters, E. R., Pugh, C. W., & Bender, K. S. (2015). Sulfate reducing bioreactor dependence on organic substrates for remediation of coal-generated acid mine drainage: Field experiments. Applied Geochemistry, 63, 70–82. https://doi.org/10.1016/j.apgeochem.2015.08.002.

    Article  CAS  Google Scholar 

  • Levay, G., Smart, R. S. C., & Skinner, W. M. (2001). The impact of water quality on flotation performance. Journal of the Southern African Institute of Mining and Metallurgy (South Africa), 101(2), 69–75.

    CAS  Google Scholar 

  • Li, X., Lan, S.-M., Zhu, Z.-P., Zhang, C., Zeng, G.-M., Liu, Y.-G., Cao, W.-C., Song, B., Yang, H., Wang, S.-F., Wu, S.-H., Li, X., Lan, S.-M., Zhu, Z.-P., Zhang, C., Zeng, G.-M., Liu, Y.-G., Cao, W.-C., Song, B., Yang, H., Wang, S.-F., & Wu, S.-H. (2018). The bioenergetics mechanisms and applications of sulfate-reducing bacteria in remediation of pollutants in drainage: A review. Ecotoxicology and Environmental Safety, 158, 162–170. https://doi.org/10.1016/j.ecoenv.2018.04.025.

    Article  CAS  Google Scholar 

  • Lin, S., Liu, R., Wu, M., Hu, Y., Sun, W., Shi, Z., & Li, W. (2020). Minimizing beneficiation wastewater through internal reuse of process water in flotation circuit. Journal of Cleaner Production, 245, 118898. https://doi.org/10.1016/j.jclepro.2019.118898.

    Article  CAS  Google Scholar 

  • Liu, W., Moran, C. J., & Vink, S. (2013a). A review of the effect of water quality on flotation. Minerals Engineering, 53, 91–100. https://doi.org/10.1016/j.mineng.2013.07.011.

    Article  CAS  Google Scholar 

  • Liu, X., Chen, B., Li, W., Song, Y., Wen, J., & Wang, D. (2013b). Recycle of wastewater from lead-zinc sulfide ore flotation process by ozone/BAC technology. Journal of Environmental Protection, 4(01), 5. https://doi.org/10.4236/jep.2013.41b002.

    Article  CAS  Google Scholar 

  • Lizárraga-Mendiola, L., Durán-Domínguez-de-Bazúa, M. C., & González-Sandoval, M. R. (2008). Environmental assessment of an active tailings pile in the State of Mexico (Central Mexico). Res. J. Environ. Sciences, 2(3), 197–208.

    Article  Google Scholar 

  • Lu, X., Zhen, G., Ni, J., Hojo, T., Kubota, K., & Li, Y. Y. (2016). Effect of influent COD/SO42− ratios on biodegradation behaviors of starch wastewater in an upflow anaerobic sludge blanket (UASB) reactor. Bioresource Technology, 214, 175–183. https://doi.org/10.1016/j.biortech.2016.04.100.

    Article  CAS  Google Scholar 

  • Lutandula, M. S., & Mwana, K. N. (2014). Perturbations from the recycled water chemical components on flotation of oxidized ores of copper. The case of bicarbonate ions. Journal of Environmental Chemical Engineering, 2(1), 190–198. https://doi.org/10.1016/j.jece.2013.12.012.

    Article  CAS  Google Scholar 

  • Mainardis, M., Buttazzoni, M., & Goi, D. (2020). Up-flow anaerobic sludge blanket (UASB) technology for energy recovery: A review on state-of-the-art and recent technological advances. Bioengineering, 7(2), 43. https://doi.org/10.3390/bioengineering7020043.

    Article  CAS  Google Scholar 

  • Masindi, V., & Gitari, W. M. (2016). Simultaneous removal of metal species from acidic aqueous solutions using cryptocrystalline magnesite/bentonite clay composite: An experimental and modelling approach. Journal of Cleaner Production, 112, 1077–1085. https://doi.org/10.1016/j.jclepro.2015.07.128.

    Article  CAS  Google Scholar 

  • McCartney, D. M., & Oleszkiewicz, J. A. (1991). Sulfide inhibition of anaerobic degradation of lactate and acetate. Water Research, 25(2), 203–209. https://doi.org/10.1016/0043-1354(91)90030-T.

    Article  CAS  Google Scholar 

  • Mulligan, C. N., & Gibbs, B. F. (2003). Innovative biological treatment processes for wastewater in Canada. Water Quality Research Journal of Canada, 38(2), 243–265. https://doi.org/10.2166/wqrj.2003.018.

    Article  CAS  Google Scholar 

  • Muzenda, E. (2010). An investigation into the effect of water quality on flotation performance. World Academy of Science, Engineering and Technology, 69, 237–241 ISNI:0000000091950263.

    Google Scholar 

  • Najib, T., Solgi, M., Farazmand, A., Heydarian, S. M., & Nasernejad, B. (2017). Optimization of sulfate removal by sulfate reducing bacteria using response surface methodology and heavy metal removal in a sulfidogenic UASB reactor. Journal of Environmental Chemical Engineering, 5(4), 3256–3265. https://doi.org/10.1016/j.jece.2017.06.016.

    Article  CAS  Google Scholar 

  • Nejeschlebová, L., Sracek, O., Mihaljevič, M., Ettler, V., Kříbek, B., Knésl, I., & Mapani, B. (2015). Geochemistry and potential environmental impact of the mine tailings at Rosh Pinah, southern Namibia. Journal of African Earth Sciences, 105, 17–28. https://doi.org/10.1016/j.jafrearsci.2015.02.005.

    Article  CAS  Google Scholar 

  • Obreque-Contreras, J., Pérez-Flores, D., Gutiérrez, P., & Chávez-Crooker, P. (2015). Acid mine drainage in Chile: An opportunity to apply bioremediation technology. Hydrol. Curr. Res., 6(3), 1–8. https://doi.org/10.4172/2157-7587.1000215.

    Article  CAS  Google Scholar 

  • Ojeda-Berra, L. (2008). Modelo matemático de un reactor anaerobio con bacterias sulfatorreductoras para el tratamiento del efluente del proceso de flotación de una planta minera (in Spanish) [Mathematical model of an anaerobic reactor with sulfate reducing bacteria for the treatment of flotation effluent of a mining plant]. Master’s Thesis in Chemical Engineering (Processes). Universidad Nacional Autónoma de México. Mexico City, Mexico. http://132.248.9.195/ptd2008/septiembre/0632235/Index.html

  • Ojeda-Berra, L., Bazúa-Rueda, E., & Durán-de-Bazúa, C. (2010). Computational simulation of anaerobic reactors for the treatment of industrial effluents/Simulación computacional de reactores anaerobios para el tratamiento de efluentes industriales (in Spanish). Tecnología Ciencia Educación (IMIQ, México), 25(2), 69–85 https://www.redalyc.org/pdf/482/48215903002.pdf.

    Google Scholar 

  • Olds, W. E., Tsang, D. C., Weber, P. A., & Weisener, C. G. (2013). Nickel and zinc removal from acid mine drainage: Roles of sludge surface area and neutralizing agents. Journal of Mining, 2013. https://doi.org/10.1155/2013/698031.

  • Öztürk, Y., Bıçak, Ö., Özdemir, E., & Ekmekçi, Z. (2018). Mitigation negative effects of thiosulfate on flotation performance of a Cu-Pb-Zn sulfide ore. Minerals Engineering, 122, 142–147. https://doi.org/10.1016/j.mineng.2018.03.034.

    Article  CAS  Google Scholar 

  • Pacheco-Gutiérrez, L. A., & Durán-de-Bazúa, M. C. (2006). El agua en la industria minera mexicana. Parte 1. Balances de materia en una empresa cooperante (in Spanish) [Water use in the Mexican mining industry. Part 1. Mass balances in a cooperating industry]. Tecnología Ciencia Educación (IMIQ, México), 21(2), 96-102. https://www.redalyc.org/articulo.oa?id = 48221203

  • Pacheco-Gutiérrez, L. A., & Durán-Domínguez-de-Bazúa, M. C. (2007). Uso del agua en la industria minera. Parte 2: Estudio de opciones para reciclar el agua de proceso (in Spanish) Water use in the mining industry. Part 2: Options to recycle process water.Tecnología. Ciencia Educación (IMIQ, México), 22(1), 15–29 (in Spanish). https://www.redalyc.org/pdf/482/48222103.pdf.

    Google Scholar 

  • Panda, S., Mishra, S., & Akcil, A. (2016). Bioremediation of acidic mine effluents and the role of sulfidogenic biosystems: A mini-review. Euro-Mediterranean Journal for Environmental Integration, 1(1), 8 https://link.springer.com/article/10.1007/s41207-016-0008-3.

    Article  Google Scholar 

  • Papirio, S., Villa-Gomez, D. K., Esposito, G., Pirozzi, F., & Lens, P. N. L. (2013). Acid mine drainage treatment in fluidized-bed bioreactors by sulfate-reducing bacteria: A critical review. Critical Reviews in Environmental Science and Technology, 43(23), 2545–2580. https://doi.org/10.1080/10643389.2012.694328.

    Article  CAS  Google Scholar 

  • Poblete-Mier C. A. (2015). Arranque y operación de un reactor anaerobio de lecho de lodos de flujo ascendente (RALLFA) para el tratamiento de un efluente proveniente del proceso de flotación de una planta minera (in Spanish) [Start-up and operation of an upflow anaerobic sludge bed (UASB) reactor for the treatment of an effluent from the flotation process of a mining plant]. B. S. Thesis in Chemical Engineering. Universidad Nacional Autónoma de México, Mexico City. https://132.248.9.195/ptd2015/noviembre/0738039/Index.html

  • Quiahua-Salvador, G., Galicia-Alvarado, L. E., Cuéllar-Briseño, R., Castillo-Garduño, A. M., Bernal-González, M., Durán-Domínguez-de-Bazúa, M. D. C., Bazúa-Rueda, E. R. (2019). Biotransformación anaerobia de sulfuros metálicos de Cu, Fe, Zn y Pb en un efluente proveniente de la operación de flotación de una mina cooperante (in Spanish) [Anaerobic biotransformation of metal sulfides of Cu, Fe, Zb, and Pb in an effluent from the flotation operation of a cooperating mine]. In Electronic Book of Selected Papers 2019 Ninth International Minisymposiumon Removal of Contaminants from Water, Atmosphere, and Soils/Libro electrónico de contribuciones selectas 2019 IX Minisimposio Internacional sobre Remoción de Contaminantes de Aguas Atmósfera y Suelos. Pp. 395-404, 461. Mejor cartel estudiantil en la Mesa Redonda de Sustancias y Residuos Peligrosos y Educación Ambiental (SyRP y EA) (in Spanish) [Best Student Poster at the Round Table on Hazardous Substances and Wastes and Environmental Education (HS&W and EE)]. September 09-14, 2019. Villahermosa, Tabasco, Mexico.

  • Rao, S. R., & Finch, J. A. (1989). A review of water re-use in flotation. Minerals Engineering, 2(1), 65–85. https://doi.org/10.1016/0892-6875(89)90066-6.

    Article  CAS  Google Scholar 

  • Reis, M. A. M., Almeida, J. S., Lemos, P. C., & Carrondo, M. J. T. (1992). Effect of hydrogen sulfide on growth of sulfate reducing bacteria. Biotechnology and Bioengineering, 40(5), 593–600. https://doi.org/10.1002/bit.260400506.

    Article  CAS  Google Scholar 

  • Rezadehbashi, M., & Baldwin, S. A. (2018). Core sulphate-reducing microorganisms in metal-removing semi-passive biochemical reactors and the co-occurrence of methanogens. Microorganisms, 6(1), 16. https://doi.org/10.3390/microorganisms6010016.

    Article  CAS  Google Scholar 

  • Rinzema, A., & Lettinga, G. (1988). The effect of sulphide on the anaerobic degradation of propionate. Environmental Technology, 9(2), 83–88 https://d1wqtxts1xzle7.cloudfront.net/47907891/The_effect_of_sulphide_on_the_anaerobic_20160809-20740-1hx4pso.pdf?1470733089.

    CAS  Google Scholar 

  • Ríos-Vázquez, J. L. (2009). Diseño, construcción y arranque de un reactor anaerobio de lecho de lodos de flujo ascendente para el estudio de la precipitación de metales de efluentes de la industria minera (in Spanish) [Design, construction, and starting-up of an up-flow anaerobic sludge blanket reactor to study metals precipitation of effluents of the mining industry]. Professional thesis in Chemical Engineering. Universidad Nacional Autónoma de México. Mexico City, Mexico. http://132.248.9.195/ptd2009/marzo/0641028/Index.html

  • Rodrigues, C., Núñez-Gómez, D., Silveira, D. D., Lapolli, F. R., & Lobo-Recio, M. A. (2019). Chitin as a substrate for the biostimulation of sulfate-reducing bacteria in the treatment of mine-impacted water (MIW). Journal of Hazardous Materials, 375, 330–338. https://doi.org/10.1016/j.jhazmat.2019.02.086.

    Article  CAS  Google Scholar 

  • Rodrigues, C., Núñez-Gómez, D., Follmann, H. V. D. M., Silveira, D. D., Nagel-Hassemer, M. E., Lapolli, F. R., & Lobo-Recio, M. Á. (2020). Biostimulation of sulfate-reducing bacteria and metallic ions removal from coal mine-impacted water (MIW) using shrimp shell as treatment agent. Journal of Hazardous Materials, 398, 122893. https://doi.org/10.1016/j.jhazmat.2020.122893.

    Article  CAS  Google Scholar 

  • Salminen, J., Blomberg, P., Mäkinen, J., & Räsänen, L. (2015). Environmental aspects of metals removal from waters and gold recovery. AIChE Journal, 61(9), 2739–2748. https://doi.org/10.1002/aic.14917.

    Article  CAS  Google Scholar 

  • Sánchez-Andrea, I., Sanz, J. L., Bijmans, M. F., & Stams, A. J. (2014). Sulfate reduction at low pH to remediate acid mine drainage. Journal of Hazardous Materials, 269, 98–109. https://doi.org/10.1016/j.jhazmat.2013.12.032.

    Article  CAS  Google Scholar 

  • Sandenbergh, R. F., & Wei, Y. (2007). The influence of water quality on the flotation of the Rosh Pinah complex lead-zinc sulfides. In: South African Institute of Mining and Metallurgy (ed). The 4th Southern African Conference on Base Metals, South Africa, pp. 45-55. https://www.saimm.co.za/Conferences/BM2007/045-56_Sandenbergh.pdf

  • Shengo, L. M., & Mutiti, W. N. C. (2016). Bio-treatment and water reuse as feasible treatment approaches for improving wastewater management during flotation of copper ores. International Journal of Environmental Science and Technology, 13(10), 2505–2520. https://doi.org/10.1007/s13762-016-1073-5.

    Article  CAS  Google Scholar 

  • Shengo, L. M., Gaydardzhiev, S., & Kalenga, N. M. (2014). Assessment of water quality effects on flotation of copper–cobalt oxide ore. Minerals Engineering, 65, 145–148. https://doi.org/10.1016/j.mineng.2014.06.005.

    Article  CAS  Google Scholar 

  • Singh, R., Kumar, A., Kirrolia, A., Kumar, R., Yadav, N., Bishnoi, N. R., & Lohchab, R. K. (2011). Removal of sulphate, COD and Cr (VI) in simulated and real wastewater by sulphate reducing bacteria enrichment in small bioreactor and FTIR study. Bioresource Technology, 102(2), 677–682. https://doi.org/10.1016/j.biortech.2010.08.041.

    Article  CAS  Google Scholar 

  • Slatter, K. A., Plint, N. D., Cole, M., Dilsook, V., De Vaux, D., Palm, N., & Ostendorp, B. (2009). Water management in Anglo Platinum process operations: Effects of water quality on process operations. In International Mine Water Conference, Pretoria, South Africa (pp. 19-23). Slatter_et_al_2009_Anglo_Platinum_water_management20190528-112545-1t2v9c0.pdf

  • Smith, N. W., Shorten, P. R., Altermann, E., Roy, N. C., & McNabb, W. C. (2019). A mathematical model for the hydrogenotrophic metabolism of sulphate-reducing bacteria. Frontiers in microbiology, 10, 1652. https://doi.org/10.3389/fmicb.2019.01652.

    Article  Google Scholar 

  • Speece, R. E. (1996). Sulfide production. In R. E. Speece (Ed.), Anaerobic biotechnology for industrial wastewaters (pp. 287–318). Tennessee: Archaea Press. Nashville.

    Google Scholar 

  • Tang, M., & Wen, S. (2019). Effects of cations/anions in recycled tailing water on cationic reverse flotation of iron oxides. Minerals, 9(3), 161. https://doi.org/10.3390/min9030161.

    Article  CAS  Google Scholar 

  • Tolonen, E. T., Sarpola, A., Hu, T., Rämö, J., & Lassi, U. (2014). Acid mine drainage treatment using by-products from quicklime manufacturing as neutralization chemicals. Chemosphere, 117, 419–424. https://doi.org/10.1016/j.chemosphere.2014.07.090.

    Article  CAS  Google Scholar 

  • Uster, B., Milke, M., Webster-Brown, J., O'Sullivan, A., Pope, J., & Trumm, D. (2019). Effect of alkalinity source on mechanisms of iron, manganese and zinc removal from acid mine drainage by sulfate-reducing bioreactors. https://doi.org/10.31224/osf.io/yzh9s

  • Van Hille, R., Foster, T., Storey, A., & Duncan, J. (2004). Heavy metal precipitation by sulphide and bicarbonate: Evaluating methods to predict anaerobic digester overflow performance. Jarvis, A. P., Dudgeon, B. A. & Younger, P. L.: Mine Water 2004–Proceedings International Mine Water Association Symposium, 2, 141–150. https://doi.org/10.1007/s13205-016-0437-3.

  • Vitor, G., Palma, T. C., Vieira, B., Lourenço, J. P., Barros, R. J., & Costa, M. C. (2015). Start-up, adjustment, and long-term performance of a two-stage bioremediation process treating real acid mine drainage, coupled with biosynthesis of ZnS nanoparticles and ZnS/TiO2 nanocomposites. Minerals Engineering, 75, 85–93. https://doi.org/10.1016/j.mineng.2014.12.003.

    Article  CAS  Google Scholar 

  • Xi, Y., Lan, S., Li, X., Wu, Y., Yuan, X., Zhang, C., & Wu, S. (2020). Bioremediation of antimony from wastewater by sulfate-reducing bacteria: Effect of the coexisting ferrous ion. International Biodeterioration & Biodegradation, 148, 104912. https://doi.org/10.1016/j.ibiod.2020.104912.

    Article  CAS  Google Scholar 

  • Xue, W., Hao, T., Mackey, H. R., Li, X., Chan, R. C., & Chen, G. (2017). The role of sulfate in aerobic granular sludge process for emerging sulfate-laden wastewater treatment. WaterResearch, 124, 513–520. https://doi.org/10.1016/j.watres.2017.08.009.

    Article  CAS  Google Scholar 

  • Yildiz, M., Yilmaz, T., Arzum, C. S., Yurtsever, A., Kaksonen, A. H., & Ucar, D. (2019). Sulfate reduction in acetate-and ethanol-fed bioreactors: Acidic mine drainage treatment and selective metal recovery. Minerals Engineering, 133, 52–59. https://doi.org/10.1016/j.mineng.2019.01.007.

    Article  CAS  Google Scholar 

  • Zandvoort, M. H., Van Hullebusch, E. D., Fermoso, F. G., & Lens, P. N. L. (2006). Trace metals in anaerobic granular sludge reactors: bioavailability and dosing strategies. Engineering in life sciences, 6(3), 293–301. https://doi.org/10.1002/elsc.200620129.

    Article  CAS  Google Scholar 

  • Zhang, M., & Wang, H. (2016). Preparation of immobilized sulfate reducing bacteria (SRB) granules for effective bioremediation of acid mine drainage and bacterial community analysis. Minerals Engineering, 92, 63–71. https://doi.org/10.1016/j.mineng.2016.02.008.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors give recognition to the cooperating mine personnel for the flotation water supply, from its collection in the process to its transfer to the UNAM laboratories, as well as the academic visits and stay costs at the mine site, and the availability of all technical data through direct access.

Funding

The authors acknowledge UNAM (in Spanish) authorities’ financial support through its General Directorate for Academic Personnel Affairs (DGAPA, in Spanish), within the Program of Support for Research Projects and Technological Innovation (PAPIIT, in Spanish), IN115118, for the partial funding to carry out this research as well as several editions of the Program of Support for Projects to Innovate and Improve Education (PAPIME, in Spanish), PE100514, EN103704, and PE101709, and also UNAM Faculty of Chemistry through the Program of Support for Research and Postgraduate Studies (PAIP, in Spanish) granted partial financing given to two of the authors (50009065 and 50009067).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María-del-Carmen Durán-Domínguez-de-Bazúa.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leal-Gutiérrez, M.J., Cuéllar-Briseño, R., Castillo-Garduño, A.M. et al. Precipitation of Heavy Metal Ions (Cu, Fe, Zn, and Pb) from Mining Flotation Effluents Using a Laboratory-Scale Upflow Anaerobic Sludge Blanket Reactor. Water Air Soil Pollut 232, 197 (2021). https://doi.org/10.1007/s11270-021-05042-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05042-1

Keywords

Navigation