Skip to main content
Log in

An accumulation of genetic variation and selection across the disease-related genes during apple domestication

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Although human-imposed selection is known to have altered plant traits during crop domestication, the effect of selection on host susceptibility or resistance is not well understood. Moreover, the domestication of perennial tree fruit crops, unlike annual crops, was driven by hybridization, clonal propagation, and selection of desirable phenotypes, which could confound the accurate assessment of domestication-associated effects on host resistance or susceptibility genes. We studied the effects of domestication on disease-related nucleotide-binding leucine-rich repeat (NLR) genes by combining phylogenetic, haplotype, and selection signature analysis using sequence data from Golden Delicious double haploid (GDDH13 v.1.1) apple genome and 80 resequenced domesticated and wild Malus accessions. The NLR gene family in the GDDH13 v.1.1 apple genome constituted 546 genes that showed expansion mainly through proximal (39.1%) and dispersed (29.5%) duplications. The genome duplication (WGD) within Rosaceae, affecting the Malus lineage, is also evident in the NLR genes. The NLR genes are found in genomic regions associated with previously detected disease resistance-related quantitative trait loci (QTL) for apple scab, fire blight, powdery mildew, and blue mold. A genomic diversity analysis identified that the NLR genes in domesticated apples (Malus domestica) have more variation (average πdom=4.01 × 10−3) than their main progenitor, wild M. sieversii (average πsie=2.95 × 10−3) and M. sylvestris (average πsyl=2.11 × 10−3), which hybridized with M. domestica during the domestication process. These results suggest evidence of selection on disease-related genes associated with domestication of apple. An increased diversity across NLR genes in the domesticated germplasm may be attributed to their diverse geographical origins and distinct pedigrees, together with selection for disease resistance during domestication. The NLR genes under selection can provide opportunities to explore their role in disease resistance in apples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All the data is provided within the manuscript and as supplemental files. The apple genome sequence variants were published previously (Duan et al. 2017).

References

  • Arya P, Kumar G, Acharya V, Singh AK (2014) Genome-wide identification and expression analysis of NBS-encoding genes in Malus domestica and expansion of NBS genes in Rosaceae. PLoS One 9:e107987

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Belfanti E, Silfverberg-Dilworth E, Tartarini S, Patocchi A, Barbieri M, Zhu J, Vinatzer BA, Gianfranceschi L, Gessler C, Sansavini S (2004) The HcrVf2 gene from a wild apple confers scab resistance to a transgenic cultivated variety. Proc Natl Acad Sci U S A 101:886–890

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bowen JK, Mesarich CH, Bus VGM, Beresford RM, Plummer KM, Templeton MD (2011) Venturia inaequalis: the causal agent of apple scab. Mol Plant Pathol 12:105–122

    Article  PubMed  Google Scholar 

  • Broggini GAL, Wöhner T, Fahrentrapp J, Kost TD, Flachowsky H, Peil A, Hanke M, Richter K, Patocchi A, Gessler C (2014) Engineering fire blight resistance into the apple cultivar ‘Gala’ using the FB_MR5 CC-NBS-LRR resistance gene of Malus × robusta 5. Plant Biotechnol J 12:728–733

    Article  PubMed  CAS  Google Scholar 

  • Browning SR, Browning BL (2007) Rapid and accurate haplotype phasing and missing data inference for whole genome association studies using localized haplotype clustering. Am J Hum Genet 81:1084–1097

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden T (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cannon SB, Zhu H, Baumgarten AM, Spangler R, May G, Cook DR, Young ND (2002) Diversity, distribution, and ancient taxonomic relationships within the TIR and Non-TIR NBS-LRR resistance gene subfamilies. J Mol Evol 54:548–562

    Article  PubMed  CAS  Google Scholar 

  • Coart E, Glabeke SV, Loose MD, Larsen AS, Roldan-Ruiz I (2006) Chloroplast diversity in the genus Malus: new insights into the relationship between the European wild apple (Malus sylvestris (L.) Mill.) and the domesticated apple (Malus domestica Borkh.). Mol Ecol 15:2171–2182

    Article  PubMed  CAS  Google Scholar 

  • Córdova-Campos O, Adame-Álvarez RM, Acosta-Gallegos JA, Heil M (2012) Domestication affected the basal and induced disease resistance in common bean (Phaseolus vulgaris). Eur J Plant Pathol 134:367–379

    Article  Google Scholar 

  • Cornille A, Gladieux P, Smulders MJM, Rolden-Ruiz I, Laurens F, Cam BL et al (2012) New insight into the history of domesticated apple: secondary contribution of the European wild apple to the genome of cultivated varieties. PLoS Genet 8:e0201409

    Article  CAS  Google Scholar 

  • Cornille A, Giraud T, Smulders MJM, Roldán-Ruiz I, Gladieux P (2014) The domestication and evolutionary ecology of apples. Trends Genet 30:57–65

    Article  PubMed  CAS  Google Scholar 

  • Cornille A, Antolín F, Garcia E, Vernesi C, Fietta A, Brinkkemper O, Kirleis W, Schlumbaum A, Roldán-Ruiz I (2019) A multifaceted overview of apple tree domestication. Trends Plant Sci 24:770–782

    Article  PubMed  CAS  Google Scholar 

  • Daccord N, Celton J, Linsmith G, Becker C, Choisne N, Schijlen E et al (2017) High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nat Genet 49:1099–1106

    Article  PubMed  CAS  Google Scholar 

  • Danecek P, Auton A, Abecasis G, Albers CA, Banks IE, DePristo MA et al (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dangl JL, Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    Article  CAS  PubMed  Google Scholar 

  • DeYoung BJ, Innes RW (2006) Plant NBS-LRR proteins in pathogen sensing and host defense. Nat Immunol 7:1243–1249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dray S, Dufour A (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20

    Article  Google Scholar 

  • Duan N, Bai Y, Sun H, Wang N, Ma Y, Li M, Wang X, Jiao C, Legall N, Mao L, Wan S, Wang K, He T, Feng S, Zhang Z, Mao Z, Shen X, Chen X, Jiang Y, Wu S, Yin C, Ge S, Yang L, Jiang S, Xu H, Liu J, Wang D, Qu C, Wang Y, Zuo W, Xiang L, Liu C, Zhang D, Gao Y, Xu Y, Xu K, Chao T, Fazio G, Shu H, Zhong GY, Cheng L, Fei Z, Chen X (2017) Genome re-sequencing reveals the history of apple and supports a two-stage model for fruit enlargement. Nature Comm 8:249

    Article  CAS  Google Scholar 

  • van Eck L, Bradeen JM (2019) Hunting for novel disease resistance genes: observations and opportunities from the Rosaceae. Acta Hortic 1232:125–133

    Google Scholar 

  • Eddy S (2003) HMMER User’s Guide. Biological sequence analysis using profile hidden Markov models. Howard Hughes Medical Institute. http://hmmer.org/. Accessed 30 Jan 2021

  • Fahrentrapp J, Broggini GAL, Kellerhals M, Peil A, Richter K, Zini E, Gessler C (2013) A candidate gene for fire blight resistance in Malus×robusta 5 is coding for a CC–NBS–LRR. Tree Genet Genomes 9:237–251

    Article  Google Scholar 

  • Fernández-Marín B, Milla R, Martín-Robles N, Arc E, Kranner I, Becerril JM, García-Plazaola JI (2014) Side-effects of domestication: cultivated legume seeds contain similar tocopherols and fatty acids but less carotenoids than their wild counterparts. BMC Plant Biol 14:1599

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gladieux P, Zhang X, Róldan-Ruiz I, Caffier V, Leroy T, Devaux M et al (2010) Evolution of the population structure of Venturia inaequalis, the apple scab fungus, associated with the domestication of its host. Mol Ecol 19:658–674

    Article  PubMed  Google Scholar 

  • Hammond-Kosack KE, Jones JD (1997) Plant disease resistance genes. Annu Rev Plant Physiol Plant Mol Biol 48:575–607

    Article  PubMed  CAS  Google Scholar 

  • Harlan JR (1992) Crops and Man. American Society of Agronomy, Madison, WI

    Book  Google Scholar 

  • Jha G, Thakur K, Thakur P (2009) The Venturia Apple Pathosystem: pathogenicity mechanisms and plant defense responses. J Biomed Biotechnol 2009:680160

    Article  PubMed  CAS  Google Scholar 

  • Jia Y, Yuan Y, Zhang Y, Yang S, Zhang X (2015) Extreme expansion of NBS-encoding genes in Rosaceae. BMC Genet 16:48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Joshi SG, Schaart JG, Groenwold R, Jacobsen E, Schouten HJ, Krens FA (2011) Functional analysis and expression profiling of HcrVf1 and HcrVf2 for development of scab resistant cisgenic and intragenic apples. Plant Mol Biol 75:579–591

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khan MA, Duffy B, Gessler C, Patocchi A (2006) QTL mapping of fire blight resistance in apple. Mol Breed 17:299–306

    Article  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 33:1870–1874

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H et al (2007) Clustal W and Clustal version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Larson G, Piperno DR, Alibi RG, Purugganan MD, Anderson L, Arroyo-Kalin M et al (2014) Current perspectives and the future of domestication studies. Proc Natl Acad Sci U S A 111:6139–6146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Le Van A, Gladieux P, Lemaire C, Cornille A, Giraud T, Durel C et al (2012) Evolution of pathogenicity traits in the apple scab fungal pathogen in response to the domestication of its host. Evol Appl 5:694–704

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping, and population genetical parameter estimation from sequencing data. Bioinformatics 27:2987–2993

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mace E, Tai S, Innes D, Godwin I, Hu W, Campbell B, Gilding E, Cruickshank A, Prentis P, Wang J, Jordan D (2014) The plasticity of NBS resistance genes in sorghum is driven by multiple evolutionary processes. BMC Plant Biol 14:253

    Article  PubMed  PubMed Central  Google Scholar 

  • Marone D, Russo MA, Laido G, De Leonardis AM, Mastrangelo AM (2013) Plant nucleotide binding site-leucine-rich repeat (NBS-LRR) genes. active guardians in host defense responses. Int J Mol Sci 14:7302–7326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McDonald BA, Stukenbrock EH (2016) Rapid emergence of pathogens in agro-ecosystems: global threats to agricultural sustainability and food security. Philos Trans R Soc B Biol Sci 371:20160026

    Article  Google Scholar 

  • McGhee GC, Sundin GW (2012) Erwinia amylovora CRISPR elements provide new tools for evaluating strain diversity and for microbial source tracking. PLoS One 7:e41706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McHale L, Tan XP, Koehl P, Michelmore RW (2006) Plant NBS-LRR proteins: adaptable guards. Genome Biol 7:212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Norelli J, Jones A, Aldwinckle HS (2003) Fire Blight management in twenty-first century: using new technologies that enhance host resistance in apples. Plant Dis 87:756–765

    Article  PubMed  Google Scholar 

  • Patocchi A, Bigler B, Koller B, Kellerhals M, Gessler C (2004) Vr2: a new apple scab resistance gene. Theor Appl Genet 109:1087–1092

    Article  PubMed  CAS  Google Scholar 

  • Price MN, Dehal PS, Arkin AP (2010) FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ross-Ibarra J, Morrell PL, Gaut BS (2007) Plant domestication, a unique opportunity to identify the genetic basis of adaptation. Proc Natl Acad Sci 104:8641–8648

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schouten HJ, Brinkhuis J, van der Burgh A, Schaart JG, Groenwold R, Broggini GAL, Gessler C (2014) Cloning and functional characterization of the Rvi15 (Vr2) gene for apple scab resistance. Tree Genet Genomes 10:251–260

    Article  Google Scholar 

  • Silva KJP, Singh J, Bednarek R, Fei Z, Khan A (2019) Differential gene regulatory pathways and co-expression networks associated with fire blight infection in apple (Malus× domestica). Hortic Res 6:35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh J, Khan A (2019) Distinct patterns of natural selection determine sub-population structure in the fire blight pathogen, Erwinia amylovora. Sci Rep 9:14017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh J, Fabrizio J, Desnoues E, Silva JP, Busch W, Khan A (2019a) Root system traits impact early fire blight susceptibility in apple (Malus× domestica). BMC Plant Biol 19:579

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh J, Gezan SA, Vallejos CE (2019b) Developmental pleiotropy shaped the roots of the domesticated common bean (Phaseolus vulgaris). Plant Physiol 180:1467–1479

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spengler RN (2019) Origins of the apple: the role of megafaunal mutualism in the domestication of Malus and Rosaceous trees. Front Plant Sci 10:617

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun M, Zhang M, Singh J, Song B, Tang Z, Liu Y, Wang R, Qin M, Li J, Khan A, Wu J (2020) Contrasting genetic variation and positive selection followed the divergence of NBS-encoding genes in Asian and European pears. BMC Genomics 10:809

    Article  CAS  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A et al (2010) The genome of the domesticated apple (Malus domestica Borkh.). Nat Genet 42:833–839

    Article  PubMed  CAS  Google Scholar 

  • Vinatzer BA, Patocchi A, Gianfranceschi L, Tartarini S, Zhang HB, Gessler C, Sansavini S (2001) Apple contains receptor-like genes homologous to the Cladosporium fulvum resistance gene family of tomato with a cluster of genes co-segregating with Vf apple scab resistance. Mol Plant Microbe Interact 14:508–515

    Article  PubMed  CAS  Google Scholar 

  • Wang K, Li M, Hakonarson H (2010) ANNOVAR: Functional annotation of genetic variants from next-generation sequencing data. Nucleic Acids Res 38:e164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Tang H, DeBarry JD, Tan X, Li J, Wang X, Lee T, Jin H, Marler B, Guo H, Kissinger JC, Paterson AH (2012) MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res 40:e49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zeng Q, Cui Z, Wang J, Childs KL, Sundin GW, Cooley DR, Yang CH, Garofalo E, Eaton A, Huntley RB, Yuan X, Schultes NP (2018) Comparative genomics of Spiraeoideae-infecting Erwinia amylovora strains provides novel insight to genetic diversity and identifies the genetic basis of a low-virulence strain. Mol Plant Pathol 19:1652–1666

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van der Zwet T, Orolaza-Halbrendt N, Zeller W (2012) Fire blight history, biology, and management. American Phytopathological Society Press, St Paul, MN

    Google Scholar 

Download references

Acknowledgements

We acknowledge Zhangjun Fei from Boyce Thompson Institute for providing the apple genome sequence variants file (Duan et al. 2017).

Funding

This research was supported by the New York State’s USDA Specialty Crop Block Grant Program’s grant #SCG-18-008, managed by the New York Farm Viability Institute and New York State’s Department of Agriculture and Markets.

Author information

Authors and Affiliations

Authors

Contributions

J.S. and A.K. conceived and designed the original research; A.K. supervised the research; J.S. and M.S. performed gene family characterization and duplication analysis; J.S. and S.B.C. performed the phylogenetic analysis; J.S. performed the diversity and selection analysis with input from A.K.; J.S. wrote the first draft of the manuscript. All authors contributed towards improving the manuscript and have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Awais Khan.

Ethics declarations

Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. USDA is an equal opportunity provider and employer.

Competing interests

The authors declare no competing interests.

Additional information

Communicated by C. Rellstab

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(XLSX 34 kb)

ESM 2

(XLSX 23 kb)

ESM 3

(XLSX 19 kb)

ESM 4

(XLSX 18 kb)

ESM 5

(XLSX 30 kb)

ESM 6

(XLSX 234 kb)

ESM 7

(XLSX 12 kb)

ESM 8

(XLSX 14 kb)

ESM 9

(DOCX 13 kb)

Supplemental figure S1

A bar plot showing the distribution of nonsynonymous (Ka) to synonymous (Ks) ratio for the NLR genes in apple. The x-axis represents individual NLR gene (bar) and y-axis represents the Ka/Ks ratios for these genes. (PNG 1740 kb)

High resolution image (TIFF 9275 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, J., Sun, M., Cannon, S.B. et al. An accumulation of genetic variation and selection across the disease-related genes during apple domestication. Tree Genetics & Genomes 17, 29 (2021). https://doi.org/10.1007/s11295-021-01510-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-021-01510-1

Keywords

Navigation